The cancer journal
-
Progress in improving the prognosis of patients with glioblastoma has been modest and has predominantly relied on informative imaging, optimization of medical and surgical treatment, and approval of new drugs with modest benefits on overall and/or progression-free survival. This has frustrated clinicians and demoralized patients but has underscored the importance of pursuing novel treatment strategies in hopes of mounting a decisive assault on this disease. ⋯ In fact, the engineering of viruses to fight cancer is a field that has now reached scientific maturity and has rapidly progressed from preclinical stages to clinical testing with considerable safety but disappointing efficacy. Here we review the milestones of this therapy focusing on landmark clinical trials, shed light on the limitations of this approach, and describe the recent and future strategies aimed at bringing promising efficacy to this mode of therapy.
-
Glioblastoma is the most common primary malignant brain tumor; standard initial treatment includes a combination of radiation and temozolomide, and treatment at recurrence often includes the use of antiangiogenic agents. Characterization of tumor at initial diagnosis, assessment of response, and ability to distinguish viable tumor from treatment effects are ongoing challenges in neuroimaging. Progress has been made with the new Response Assessment in Neuro-Oncology criteria, and new imaging modalities and combinations continue to be evaluated to further improve our ability to characterize glioblastomas at all points during their disease course.
-
Glioblastoma, the most aggressive primary brain tumor, thrives in a microenvironment of relative immunosuppression within the relatively immune-privileged central nervous system. Despite treatments with surgery, radiation therapy, and chemotherapy, prognosis remains poor. The recent success of immunotherapy in the treatment of other cancers has renewed interest in vaccine therapy for the treatment of gliomas. In this article, we outline various immunotherapeutic strategies, review recent clinical trials data, and discuss the future of vaccine therapy for glioblastoma.
-
Glioblastoma multiforme is a histopathologically heterogeneous disease with few treatment options. Therapy based on genomic alterations is rapidly gaining popularity because of the high response rate and high specificity. ⋯ Identification of expression subtypes has resulted in new insights such as the association between genomic abnormalities and expression signatures. This review describes the types of genomic studies that have been performed and that are underway, the most prominent results, and the implications of genomic research for the development of clinical treatment modalities.
-
Brain tumors--particularly glioblastoma multiforme--pose an important public health problem in the United States. Despite surgical and medical advances, the prognosis for patients with malignant gliomas remains grim: current therapy is insufficient with nearly universal recurrence. ⋯ In this article, we summarize recent progress in drug delivery to the brain, with an emphasis on convection-enhanced delivery of nanocarriers. We examine the potential of new delivery methods to permit novel drug- and gene-based therapies that target brain cancer stem cells and discuss the use of nanomaterials for imaging of tumors and drug delivery.