The cancer journal
-
The last several years has witnessed an explosion in genomics, with the advent of genome-wide association studies revealing hundreds of DNA variants significantly associated with most common diseases, including cancer. On the heels of these scientific advances came the direct-to-consumer (DTC) genetic testing industry. Genome-wide scans for disease have been marketed and sold directly to the public, without the involvement of a health care provider. ⋯ Ethical and scientific controversy surrounding the DTC genetic testing industry is presented, along with policy recommendations, regulatory actions, and the changing landscape of the DTC genetic testing market in response. Although our understanding of the human genome holds much promise in the realm of cancer prevention and treatment, DTC genomic profiling for cancer risk prediction is unlikely in its current form to have any significant impact on the health of the public. Time will tell if the next venture in genomic medicine, whole genome sequencing, will be accompanied by the translational research and emphasis on public/provider education required to ensure its successful application toward reducing the burden of cancer at a population level.
-
Progress in improving the prognosis of patients with glioblastoma has been modest and has predominantly relied on informative imaging, optimization of medical and surgical treatment, and approval of new drugs with modest benefits on overall and/or progression-free survival. This has frustrated clinicians and demoralized patients but has underscored the importance of pursuing novel treatment strategies in hopes of mounting a decisive assault on this disease. ⋯ In fact, the engineering of viruses to fight cancer is a field that has now reached scientific maturity and has rapidly progressed from preclinical stages to clinical testing with considerable safety but disappointing efficacy. Here we review the milestones of this therapy focusing on landmark clinical trials, shed light on the limitations of this approach, and describe the recent and future strategies aimed at bringing promising efficacy to this mode of therapy.
-
Glioblastoma is the most common primary malignant brain tumor; standard initial treatment includes a combination of radiation and temozolomide, and treatment at recurrence often includes the use of antiangiogenic agents. Characterization of tumor at initial diagnosis, assessment of response, and ability to distinguish viable tumor from treatment effects are ongoing challenges in neuroimaging. Progress has been made with the new Response Assessment in Neuro-Oncology criteria, and new imaging modalities and combinations continue to be evaluated to further improve our ability to characterize glioblastomas at all points during their disease course.
-
Glioblastoma, the most aggressive primary brain tumor, thrives in a microenvironment of relative immunosuppression within the relatively immune-privileged central nervous system. Despite treatments with surgery, radiation therapy, and chemotherapy, prognosis remains poor. The recent success of immunotherapy in the treatment of other cancers has renewed interest in vaccine therapy for the treatment of gliomas. In this article, we outline various immunotherapeutic strategies, review recent clinical trials data, and discuss the future of vaccine therapy for glioblastoma.
-
Glioblastoma multiforme is a histopathologically heterogeneous disease with few treatment options. Therapy based on genomic alterations is rapidly gaining popularity because of the high response rate and high specificity. ⋯ Identification of expression subtypes has resulted in new insights such as the association between genomic abnormalities and expression signatures. This review describes the types of genomic studies that have been performed and that are underway, the most prominent results, and the implications of genomic research for the development of clinical treatment modalities.