EBioMedicine
-
Comparative Study
Development of Upper Respiratory Tract Microbiota in Infancy is Affected by Mode of Delivery.
Birth by Caesarian section is associated with short- and long-term respiratory morbidity. We hypothesized that mode of delivery affects the development of the respiratory microbiota, thereby altering its capacity to provide colonization resistance and consecutive pathobiont overgrowth and infections. ⋯ Within the first week, rapid niche differentiation had occurred; initially with in most infants Staphylococcus aureus predominance, followed by differentiation towards Corynebacterium pseudodiphteriticum/propinquum, Dolosigranulum pigrum, Moraxella catarrhalis/nonliquefaciens, Streptococcus pneumoniae, and/or Haemophilus influenzae dominated communities. Infants born by Caesarian section showed a delay in overall development of respiratory microbiota profiles with specifically reduced colonization with health-associated commensals like Corynebacterium and Dolosigranulum, thereby possibly influencing respiratory health later in life.
-
The innate immune protein Stimulator of interferon genes (STING) promotes the induction of interferon beta (IFN-β) production via the phosphorylation of its C-terminal tail (CTT) by TANK-binding kinase 1 (TBK1). Potent ligands of STING are, therefore, promising candidates for novel anti-cancer drugs or vaccine adjuvants. ⋯ Here, we performed molecular dynamics simulations of the STING fragment containing the CTT in ligand-bound and unbound forms and observed that the binding of a potent ligand cyclic GMP-AMP (cGAMP) induced a local structure in the CTT, reminiscent of the known structure of a TBK1 substrate. The subsequent molecular biological experiments confirmed the observed dynamics of the CTT and identified essential residues for the activation of the IFN-β promoter, leading us to propose a new mechanism of STING activation.