Journal of biomedical informatics
-
The ability to predict acuity (patients' care needs), would provide a powerful tool for health care managers to allocate resources. Such estimations and predictions for the care process can be produced from the vast amounts of healthcare data using information technology and computational intelligence techniques. Tactical decision-making and resource allocation may also be supported with different mathematical optimization models. ⋯ By applying language technology to electronic patient documents it is possible to accurately predict the value of the acuity scores of the coming day based on the previous daýs assigned scores and nursing notes.
-
Advanced Cardiac Life Support (ACLS) is a series of team-based, sequential and time constrained interventions, requiring effective communication and coordination of activities that are performed by the care provider team on a patient undergoing cardiac arrest or respiratory failure. The state-of-the-art ACLS training is conducted in a face-to-face environment under expert supervision and suffers from several drawbacks including conflicting care provider schedules and high cost of training equipment. ⋯ Our results indicate that the VR-based ACLS training with proper feedback components can provide a learning experience similar to face-to-face training, and therefore could serve as a more easily accessed supplementary training tool to the traditional ACLS training. Our findings also suggest that the degree of persuasive features in VR environments have to be designed considering the interruptive nature of the feedback elements.
-
Medical documentation is a time-consuming task and there is a growing number of documentation requirements. In order to improve documentation, harmonization and standardization based on existing forms and medical concepts are needed. Systematic analysis of forms can contribute to standardization building upon new methods for automated comparison of forms. Objectives of this research are quantification and comparison of data elements for breast and prostate cancer to discover similarities, differences and reuse potential between documentation sets. In addition, common data elements for each entity should be identified by automated comparison of forms. ⋯ Identifying common data elements in medical forms from different settings with systematic and automated form comparison is feasible.