Journal of biomedical informatics
-
Information extraction from narrative clinical notes is useful for patient care, as well as for secondary use of medical data, for research or clinical purposes. Many studies focused on information extraction from English clinical texts, but less dealt with clinical notes in languages other than English. This study tested the feasibility of using "off the shelf" information extraction algorithms to identify medical concepts from Italian clinical notes. ⋯ MetaMap's performance in annotating automatically translated English clinical notes was in line with findings in the literature, with similar recall (0.75), F-measure (0.83) and even higher precision (0.95). Most of the failures were due to a bad Italian to English translation of medical terms, suggesting that using an automatic translation tool specialized in translating medical concepts might be useful to obtain better performances. In conclusion, performances obtained using MetaMap on the fully automatic translation of the Italian text are good enough to allow to use MetaMap "as it is" in clinical practice.
-
Though substantial work has been done on the usability of health information technology, improvements in electronic health record system (EHR) usability have been slow, creating frustration, distrust of EHRs and the use of potentially unsafe work-arounds. Usability standards could be part of the solution for improving EHR usability. ⋯ Similarly, functional requirements and standards for usability can help address the multitude of sequelae associated with poor usability. This paper describes the evidence-based functional requirements for usability contained in the Health Level Seven (HL7) EHR System Functional Model, and the benefits of open and voluntary EHR system usability standards.
-
Efficient searching and coding in databases that use terminological resources requires that they support efficient data retrieval. The Medical Dictionary for Regulatory Activities (MedDRA) is a reference terminology for several countries and organizations to code adverse drug reactions (ADRs) for pharmacovigilance. Ontologies that are available in the medical domain provide several advantages such as reasoning to improve data retrieval. The field of pharmacovigilance does not yet benefit from a fully operational ontology to formally represent the MedDRA terms. Our objective was to build a semantic resource based on formal description logic to improve MedDRA term retrieval and aid the generation of on-demand custom groupings by appropriately and efficiently selecting terms: OntoADR. ⋯ The methods we describe in this article could be adapted and extended to other terminologies which do not benefit from a formal semantic representation, thus enabling better data retrieval performance. Our custom groupings of MedDRA terms were used while performing signal detection, which suggests that the graphical user interface we are currently implementing to process OntoADR could be usefully integrated into specialized pharmacovigilance software that rely on MedDRA.
-
Integrating semantic dimension into clinical archetypes is necessary once modeling medical records. First, it enables semantic interoperability and, it offers applying semantic activities on clinical data and provides a higher design quality of Electronic Medical Record (EMR) systems. However, to obtain these advantages, designers need to use archetypes that cover semantic features of clinical concepts involved in their specific applications. In fact, most of archetypes filed within open repositories are expressed in the Archetype Definition Language (ALD) which allows defining only the syntactic structure of clinical concepts weakening semantic activities on the EMR content in the semantic web environment. This paper focuses on the modeling of an EMR prototype for infants affected by Cerebral Palsy (CP), using the dual model approach and integrating semantic web technologies. Such a modeling provides a better delivery of quality of care and ensures semantic interoperability between all involved therapies' information systems. ⋯ The degree of semantic interoperability that could be reached between EMR systems depends strongly on the quality of the used archetypes. Thus, the integration of semantic dimension in archetypes modeling process is crucial. By creating an ontological source and annotating archetypes, we create a supportive platform ensuring semantic interoperability between archetypes-based EMR-systems.