Journal of biomedical informatics
-
One of the significant problems in the field of healthcare is the low survival rate of people who have experienced sudden cardiac arrest. Early prediction of cardiac arrest can provide the time required for intervening and preventing its onset in order to reduce mortality. Traditional statistical methods have been used to predict cardiac arrest. They have often analyzed group-level differences using a limited number of variables. On the other hand, machine learning approach, which is part of a growing trend of predictive medical analysis, has provided personalized predictive analyses on more complex data and produced remarkable results. ⋯ According to the results, machine learning techniques can improve the outcome of cardiac arrest prediction. However, future research should be carried out to evaluate the efficiency of rarely-used algorithms and to address the challenges of external validation, implementation and adoption of machine learning models in real clinical environments.
-
The importance of incorporating Natural Language Processing (NLP) methods in clinical informatics research has been increasingly recognized over the past years, and has led to transformative advances. Typically, clinical NLP systems are developed and evaluated on word, sentence, or document level annotations that model specific attributes and features, such as document content (e.g., patient status, or report type), document section types (e.g., current medications, past medical history, or discharge summary), named entities and concepts (e.g., diagnoses, symptoms, or treatments) or semantic attributes (e.g., negation, severity, or temporality). From a clinical perspective, on the other hand, research studies are typically modelled and evaluated on a patient- or population-level, such as predicting how a patient group might respond to specific treatments or patient monitoring over time. ⋯ A particular focus is placed on mental health research, an area still relatively understudied by the clinical NLP research community, but where NLP methods are of notable relevance. Recent advances in clinical NLP method development have been significant, but we propose more emphasis needs to be placed on rigorous evaluation for the field to advance further. To enable this, we provide actionable suggestions, including a minimal protocol that could be used when reporting clinical NLP method development and its evaluation.