Journal of biomedical informatics
-
We study the question of how to represent or summarize raw laboratory data taken from an electronic health record (EHR) using parametric model selection to reduce or cope with biases induced through clinical care. It has been previously demonstrated that the health care process (Hripcsak and Albers, 2012, 2013), as defined by measurement context (Hripcsak and Albers, 2013; Albers et al., 2012) and measurement patterns (Albers and Hripcsak, 2010, 2012), can influence how EHR data are distributed statistically (Kohane and Weber, 2013; Pivovarov et al., 2014). We construct an algorithm, PopKLD, which is based on information criterion model selection (Burnham and Anderson, 2002; Claeskens and Hjort, 2008), is intended to reduce and cope with health care process biases and to produce an intuitively understandable continuous summary. ⋯ The PopKLD or PopKLD-CAT algorithms are not meant to be used as phenotyping algorithms, but we use the phenotyping task to show what information can be gained when using a more informative laboratory data summary. In the process of evaluation our method we show that the different clinical contexts and laboratory measurements necessitate different statistical summaries. Similarly, leveraging the principle of maximum entropy we argue that while some laboratory data only have sufficient information to estimate a mean and standard deviation, other laboratory data captured in an EHR contain substantially more information than can be captured in higher-parameter models.