Articles: mechanical-ventilation.
-
Observational Study
Ability of parasternal intercostal muscle thickening fraction to predict reintubation in surgical patients with sepsis.
We aimed to evaluate the ability of the parasternal intercostal (PIC) thickening fraction during spontaneous breathing trial (SBT) to predict the need for reintubation within 48 h after extubation in surgical patients with sepsis. ⋯ Among surgical patients with sepsis, PIC thickening fraction evaluated during the SBT is an independent risk factor for reintubation. The PIC thickening fraction has an excellent predictive value for reintubation. A PIC thickening fraction of ≤ 6.5-8.3% can exclude reintubation, with a negative predictive value of 100%. Furthermore, a combination of high PIC and low DE can also indicate a high risk of reintubation. However, larger studies that include different populations are required to replicate our findings and validate the cutoff values.
-
Anesthesia and analgesia · Aug 2024
Subphenotypes in Acute Respiratory Distress Syndrome: Universal Steps Toward Treatable Traits.
Patients with acute respiratory distress syndrome (ARDS) have severe respiratory impairment requiring mechanical ventilation resulting in high mortality. Despite extensive research, no effective pharmacological interventions have been identified in unselected ARDS, which has been attributed to the considerable heterogeneity. The identification of more homogeneous subgroups through phenotyping has provided a novel method to improve our pathophysiological understanding, trial design, and, most importantly, patient care through targeted interventions. ⋯ Based on this framework, the current literature was reviewed. Respiratory physiology, lung morphology, and systemic inflammatory biology subphenotypes were identified. Currently, lung morphology and systemic inflammatory biology subphenotypes are being tested prospectively in RCTs.
-
Mechanical ventilation, as an important respiratory support, plays an important role in general anesthesia and it is the cornerstone of intraoperative management of surgical patients. Different from spontaneous respiration, intraoperative mechanical ventilation can lead to postoperative lung injury, and its impact on surgical mortality cannot be ignored. Postoperative lung injury increases hospital stay and is related to preoperative conditions, anesthesia time, and intraoperative ventilation settings. ⋯ There are many factors affecting lung function after perioperative mechanical ventilation. Due to the difference of human body, the ventilation parameters suitable for each patient are different, and the deviation of each ventilation parameter can lead to postoperative pulmonary complications. Inspiratory pressure rise time and inspiratory time will be used as the new ventilation strategy.
-
Observational Study
Predictive Value of Serial Rapid Shallow Breathing Index Measurements for Extubation Success in Intensive Care Unit Patients.
Background and Objectives: Extubation success in ICU patients is crucial for reducing ventilator-associated complications, morbidity, and mortality. The Rapid Shallow Breathing Index (RSBI) is a widely used predictor for weaning from mechanical ventilation. This study aims to determine the predictive value of serial RSBI measurements on extubation success in ICU patients on mechanical ventilation. ⋯ Using both criteria together increased the likelihood by 28.48 times. Conclusions: Serial RSBI measurement can be an effective tool for predicting extubation success in patients on IMV. These findings suggest that serially measured RSBI may serve as a potential indicator for extubation readiness.
-
Clinical Trial
Physiological effects and safety of bed verticalization in patients with acute respiratory distress syndrome.
Trunk inclination in patients with Acute Respiratory Distress Syndrome (ARDS) in the supine position has gained scientific interest due to its effects on respiratory physiology, including mechanics, oxygenation, ventilation distribution, and efficiency. Changing from flat supine to semi-recumbent increases driving pressure due to decreased respiratory system compliance. Positional adjustments also deteriorate ventilatory efficiency for CO2 removal, particularly in COVID-19-associated ARDS (C-ARDS), indicating likely lung parenchyma overdistension. Tilting the trunk reduces chest wall compliance and, to a lesser extent, lung compliance and transpulmonary driving pressure, with significant hemodynamic and gas exchange implications. ⋯ Verticalization to 90° is feasible in ARDS patients, improving EELV and oxygenation up to 30°, likely due to alveolar recruitment and blood flow redistribution. However, there is a risk of overdistension and hemodynamic instability beyond 30°, necessitating individualized bed angles based on clinical situations. Trial registration ClinicalTrials.gov registration number NCT04371016 , April 24, 2020.