Articles: pandemics.
-
We evaluated a cohort of Canadian donors for T cell and antibody responses against influenza A/California/7/2009 (pH1N1) at 8-10 months after the 2nd pandemic wave by flow cytometry and microneutralization assays. Memory CD8 T cell responses to pH1N1 were detectable in 58% (61/105) of donors. These responses were largely due to cross-reactive CD8 T cell epitopes as, for those donors tested, similar recall responses were obtained to A/California 2009 and A/PR8 1934 H1N1 Hviruses. ⋯ However, those who were vaccinated within a few months following infection had the highest persisting antibody titers, suggesting that vaccination shortly after influenza infection can boost or sustain antibody levels. For the most part the circulating influenza-specific T cell and serum antibody levels in the population at one year post-pandemic were not different between cases and controls, suggesting that natural infection does not lead to higher long term T cell and antibody responses in donors with pre-existing immunity to influenza. However, based on the responses of one longitudinal donor, it is possible for a small population of pre-existing cross-reactive memory CD8 T cells to expand rapidly following infection and this response may aid in viral clearance and contribute to a lessening of disease severity.
-
The innate immune system is the first line of defense against viruses by inducing expression of cytokines and chemokines. Many pandemic influenza H1N1 virus [P(H1N1)] infected severe cases occur in young adults under 18 years old who were rarely seriously affected by seasonal influenza. Results regarding host cytokine profiles of P(H1N1) are ambivalent. In the present study we investigated host cytokine profiles in P(H1N1) patients and identified cytokines related to disease severity. ⋯ A comprehensive innate immune response was activated at the early stage of P(H1N1) infection with a combine Th1/Th2/Th3 cytokines production. As disease progression, a systemic production of IL-6 and IL-10 were observed in severe P(H1N1) patients. Further analysis found a strong correlation between IL-6 and IL-10 production in the severe P(H1N1) patients. IL-6 may be served as a mediator to induce IL-10 production. Highly elevated level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression, but the underlying mechanism awaits further detailed investigations.
-
Influenza A viruses cause recurrent, seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. The ability of influenza A viruses to adapt to various hosts and undergo reassortment events ensures constant generation of new strains with unpredictable degrees of pathogenicity, transmissibility, and pandemic potential. Currently, the combination of factors that drives the emergence of pandemic influenza is unclear, making it impossible to foresee the details of a future outbreak. Identification and characterization of influenza A virus virulence determinants may provide insight into genotypic signatures of pathogenicity as well as a more thorough understanding of the factors that give rise to pandemics.
-
The pandemic of 1918 was caused by an H1N1 influenza A virus, which is a negative strand RNA virus; however, little is known about the nature of its direct ancestral strains. Here we applied a broad genetic and phylogenetic analysis of a wide range of influenza virus genes, in particular the PB1 gene, to gain information about the phylogenetic relatedness of the 1918 H1N1 virus. We compared the RNA genome of the 1918 strain to many other influenza strains of different origin by several means, including relative synonymous codon usage (RSCU), effective number of codons (ENC), and phylogenetic relationship. ⋯ Also, according to the RSCU of the PB1 gene, the 1918 virus grouped with all human isolates and "classical" swine H1N1 viruses. The phylogenetic studies of all eight RNA gene segments of influenza A viruses may indicate that the 1918 pandemic strain originated from a H1N1 swine virus, which itself might be derived from a H1N1 avian precursor, which was separated from the bulk of other avian viruses in toto a long time ago. The high stability of the RSCU pattern of the PB1 gene indicated that the integrity of RNA structure is more important for influenza virus evolution than previously thought.
-
Given the potential worsening clinical severity of 2009 pandemic influenza A (H1N1) virus (pH1N1) infection from spring to fall 2009, we conducted a clinical case series among patients hospitalized with pH1N1 infection from September through October 2009. A case patient was defined as a hospitalized person who had test results positive for pH1N1 virus by real-time reverse-transcription polymerase chain reaction. Among 255 hospitalized patients, 34% were admitted to an intensive care unit and 8% died. ⋯ Chest radiographs obtained at hospital admission that had findings that were consistent with pneumonia were noted in 103 (46%) of 255 patients. Among 255 hospitalized patients, 208 (82%) received neuraminidase inhibitors, but only 47% had treatment started ≤ 2 days after illness onset. Overall, characteristics of hospitalized patients with pH1N1 infection in fall 2009 were similar to characteristics of patients hospitalized with pH1N1 infection in spring 2009, which suggests that clinical severity did not change substantially over this period.