Articles: surgery.
-
IEEE Trans Med Imaging · Nov 2005
A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus.
Ever since the development of the first applications in image-guided therapy (IGT), the use of head-mounted displays (HMDs) was considered an important extension of existing IGT technologies. Several approaches to utilizing HMDs and modified medical devices for augmented reality (AR) visualization were implemented. These approaches include video-see through systems, semitransparent mirrors, modified endoscopes, and modified operating microscopes. ⋯ The overlay error in the calibration plane was found to be 0.14-0.91 mm, which is less than 1% of the field of view. Using the motorized calibration rig as presented in the paper, we were also able to assess the dynamic latency when viewing augmentation graphics on a mobile target; spatial displacement due to latency was found to be in the range of 1.1-2.8 mm maximum, the disparity between the true object and its computed overlay represented latency of 0.1 s. We conclude that the automatic calibration method presented in this paper is sufficient in terms of accuracy and time requirements for standard uses of optical see-through systems in a clinical environment.
-
The aim of this work is to develop a remotely controlled manipulator to perform minimally invasive diagnostic and therapeutic interventions in the abdominal and thoracic cavities, with real-time magnetic resonance imaging (MRI) guidance inside clinical cylindrical MR scanners. The manipulator is composed of a three degree of freedom Cartesian motion system, which resides outside the gantry of the scanner, and serves as the holder and global positioner of a three degree of freedom arm which extends inside the gantry of the scanner At its distal end, the arm's end-effector can carry an interventional tool such as a biopsy needle, which can be advanced to a desired depth by means of a seventh degree of freedom. These seven degrees of freedom, provided by the entire assembly, offer extended manipulability to the device and a wide envelope of operation to the user, who can select a trajectory suitable for the procedure. ⋯ Path planning is performed with graphical tools for setting the trajectory of insertion of the interventional tool using multislice and/or three dimensional MR images which are refreshed in real time. The device control is performed with an embedded computer which runs real-time control software. The manipulator compatibility with the MR environment and image-guided operation was tested on a 1.5 T MR scanner.
-
Cardiovascular disease (CVD) is perhaps the most significant worldwide health issue. While open-heart surgery remains the predominant treatment, significant advancements have been made in minimally invasive surgery (MIS) and minimally invasive robot-assisted (MIRA) surgery. MIRA techniques offer many advantages over open-heart procedures and have extended the capabilities of MIS. ⋯ MIRA cardiac procedures can move from novel procedures performed by a select group of surgeons on a limited pool of patients to a viable alternative available to the majority of patients with CVD. In this research we propose a design for a self-contained device that delivers a locking knot. Results suggest that consistent knots can be delivered at a time savings of 12.5% and 26.4% over manual knots for trained and untrained users of a surgical robot, respectively.
-
Ann R Coll Surg Engl · Nov 2005
Unplanned admissions following ambulatory plastic surgery--a retrospective study.
Admission for overnight or longer hospital stay from a day-case unit is an unwelcome event. This audit was designed to identify the incidence of unplanned admissions and also to detect the potential factors for such overstays. ⋯ The reasons for unplanned admissions are multifactorial and merit appropriate patient selection and proper estimation of the disease process.