Articles: traumatic-brain-injuries.
-
Acta Neurochir. Suppl. · Jan 2016
State of Cerebrovascular Autoregulation Correlates with Outcome in Severe Infant/Pediatric Traumatic Brain Injury.
It could be shown in adults with severe traumatic brain injury (TBI) that the functional status of cerebrovascular autoregulation (AR), determined by the pressure reactivity index (PRx), correlates with and even predicts outcome. We investigated PRx and its correlation with outcome in infant and pediatric TBI. Methods Ten patients (median age 2.8 years, range 1 day to 14 years) with severe TBI (Glasgow Coma Scale score <9 at presentation) underwent long-term computerized intracranial pressure (ICP) and mean arterial pressure (MAP) monitoring using dedicated software for continuous determination of cerebral perfusion pressure (CPP) and PRx. Outcome was determined at discharge and at follow-up at 6 months using the Glasgow Outcome Scale (GOS) score. ⋯ The integrity of AR seems to play the same fundamental role after TBI in the pediatric population as in adults and should be determined routinely. It carries an important prognostic value. PRx seems to be an ideal candidate parameter to guide treatment in the sense of optimizing CPP, aiming at improvement of cerebrovascular autoregulation (CPPopt concept).
-
Acta Neurochir. Suppl. · Jan 2016
Early Changes in Brain Oxygen Tension May Predict Outcome Following Severe Traumatic Brain Injury.
We report on the change in brain oxygen tension (PbtO2) over the first 24 h of monitoring in a series of 25 patients with severe traumatic brain injury (TBI) and relate this to outcome. The trend in PbtO2 for the whole group was to increase with time (mean PbtO2 17.4 [1.75] vs 24.7 [1.60] mmHg, first- vs last-hour data, respectively; p = 0.002). However, a significant increase in PbtO2 occurred in only 17 patients (68 %), all surviving to intensive care unit discharge (p = 0.006). ⋯ The cumulative length of time that PbtO2 was <20 mmHg was not significantly different among these three groups. In conclusion, although for the cohort as a whole PbtO2 increased over the first 24 h, the individual trends of PbtO2 were related to outcome. There was a significant association between improving PbtO2 and survival, despite these patients having cumulative durations of hypoxia similar to those of non-survivors.
-
Background. Identifying which patients are most likely to be at risk of chronic pain and other postconcussion symptoms following mild traumatic brain injury (MTBI) is a difficult clinical challenge. Objectives. ⋯ Conclusions. Higher levels of pain catastrophizing were related to adverse early MTBI outcomes. The early detection of pain catastrophizing may facilitate goal-oriented interventions to prevent or minimize the development of chronic pain and other postconcussion symptoms.
-
Neurorehabil Neural Repair · Jan 2016
Brain-Derived Neurotrophic Factor (BDNF) in Traumatic Brain Injury-Related Mortality: Interrelationships Between Genetics and Acute Systemic and Central Nervous System BDNF Profiles.
Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain-derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) can be protective against acute mortality. Postacutely, these genotypes carry lower mortality risk in older adults and greater mortality risk among younger adults. ⋯ BDNF levels predicted mortality, in addition to gene * age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment.
-
Acta Neurochir. Suppl. · Jan 2016
Intrahospital Transfer of Patients with Traumatic Brain Injury: Increase in Intracranial Pressure.
To assess the dynamic of intracranial pressure (ICP), cerebral perfusion pressure (CPP), and dynamic pressure reactivity index (PRx) during intrahospital transport. ⋯ Intrahospital transport of patients with TBI may lead to a significant increase in ICP, dynamic PRx, and decreased CPP. The results suppose that the decision to perform brain CT in comatose patients with TBI should be carefully considered by clinicians.