Articles: traumatic-brain-injuries.
-
Learning and memory deficits are a source of considerable morbidity after traumatic brain injury (TBI). We investigated the effect of different patterns of hippocampal stimulation via a fornix electrode on cognitively demanding tasks after TBI. ⋯ Deficits in learning and memory after TBI are improved with TBS of the hippocampus. HFS and LFS do not appear to produce as great an effect as TBS.
-
The aim of this study was to evaluate the validity of the model that could produce reproducible and persistent motor weakness and define the accurate tasks and testing parameters for longitudinal assessment of neurological deficits after traumatic brain injury (TBI). We compared the effects of two rat models that suffered different controlled cortical impact (CCI) injury, as well as extensive motor cortex resection model, on behavior recovery and brain morphology. Behavioral tests including the skilled reaching task, limb-use asymmetry test and the grasping test were employed to evaluate neurofunctional recovery from pre- to 12 weeks after the injury. ⋯ At the end of the experiment, the animals' performance reached preoperative base lines on reaching task and limb-use asymmetry test in mild and moderate groups, while severe motor weakness could be observed in rats with severe CCI injury, as well as rats with extended motor cortex resection. Overall, the results of this study indicated that both models with severe CCI injury and extended resection of the motor cortex developed reproducible and long-lasting motor weakness, comparable in severity and duration and identified skilled reaching task, as well as limb-use asymmetry test, as sensitive assessments for slight neurological deficits after brain injury. This will help to provide the basis for further research of the processes after the TBI and development of novel therapies.
-
A recent meta-analysis by Hedman et al. allows for accurate estimation of brain volume changes throughout the life span. Additionally, Tate et al. showed that intracranial volume at a later point in life can be used to estimate reliably brain volume at an earlier point in life. These advancements were combined to create a model which allowed the estimation of brain volume just prior to injury in a group of patients with mild or moderate traumatic brain injury (TBI). This volume estimation model was used in combination with actual measurements of brain volume to test hypotheses about progressive brain volume changes in the patients. ⋯ During the first few months after injury, patients with mild or moderate TBI have rapid atrophy of WBP and CWM, and rapid enlargement of SCN+IFT. The magnitude and pattern of the changes in volume may allow for the eventual development of diagnostic tools based on the volume estimation approach.
-
Randomized Controlled Trial
Armodafinil for the treatment of excessive sleepiness associated with mild or moderate closed traumatic brain injury: a 12-week, randomized, double-blind study followed by a 12-month open-label extension.
To evaluate the efficacy and tolerability of armodafinil in patients with excessive sleepiness following mild or moderate closed traumatic brain injury (TBI). ⋯ Armodafinil 250 mg significantly improved sleep latency in patients with excessive sleepiness associated with mild or moderate TBI. Efficacy and tolerability of armodafinil were sustained throughout the open-label extension.
-
Journal of neurotrauma · Nov 2014
Imaging "brain strain" in youth athletes with mild traumatic brain injury during dual-task performance.
Mild traumatic brain injury (mTBI) is a common cause of injury in youth athletes. Much of what is known about the sequelae of mTBI is yielded from the adult literature, and it appears that it is mainly those with persistent post-injury symptoms who have ongoing cognitive and neural abnormalities. However, most studies have employed single-task paradigms, which may not be challenging enough to uncover subtle deficits. ⋯ The injured youths also exhibited abnormal recruitment of brain structures involved in both working memory and dual-tasking. These data show that the dual-task paradigm can uncover functional impairments in youth with mTBI who are not highly symptomatic and who do not exhibit neuropsychological dysfunction. Moreover, neural recruitment abnormalities were noted in both task conditions, which we argue suggests mTBI-related disruptions in achieving efficient cognitive control and allocation of processing resources.