Articles: traumatic-brain-injuries.
-
To evaluate the methodological quality and synthesize recommendations of evidence-based guidelines for the management of common traffic injuries. ⋯ The core components of a program of care designed to manage common traffic injuries (whiplash-associated disorders - WAD, anxiety and mild traumatic brain injuries) should include advice, education and reassurance. Depending on the condition, the following specific interventions should be considered: (1) WAD: exercise, early return to activity, mobilization/manipulation, analgesics and avoidance of collars; (2) Anxiety: psychological first aid, pharmacotherapy and cognitive behavioral therapy; and (3) Mild traumatic brain injuries: use of specific discharge criteria (including no factors warranting hospital admission and support structures for subsequent care), education upon discharge from emergency room and post-discharge care (e.g. monitoring for complications, gradual return to normal activity based on tolerance of individual). The methodological quality of guidelines varies greatly; therefore, guideline developers need to adhere to established methodological standards and conform to the evaluation criteria outlined in the Appraisal of Guidelines for Research and Evaluation II (AGREE II) instrument.
-
Disentangling the effects of "organic" neurologic damage and psychological distress after a traumatic brain injury poses a significant challenge to researchers and clinicians. Establishing a link between traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) has been particularly contentious, reflecting difficulties in establishing a unique diagnosis for conditions with overlapping and sometimes contradictory symptom profiles. ⋯ Further, we describe neurobiological models of PTSD, highlighting how patterns of neurologic damage typical in TBI may promote or protect against the development of PTSD in brain-injured populations. These data highlight the unique course of PTSD following a TBI and have important diagnostic, prognostic, and treatment implications for individuals with a dual diagnosis.
-
Patients suffering traumatic brain and chest wall injuries are often difficult to liberate from the ventilator yet best timing of tracheostomy remains ill-defined. While prior studies have addressed early versus late tracheostomy, they generally suffer from the use of historical controls, which cannot account for variations in management over time. Propensity scoring can be utilized to identify controls from the same patient population, minimizing impact of confounding variables. The purpose of this study was to determine outcomes associated with early versus late tracheostomy by application of propensity scoring. ⋯ In the current era of increased health-care costs, early tracheostomy significantly decreased both pulmonary morbidity and critical care resource utilization. This translates to an appreciable cost savings, at minimum $52,173 per patient and a potential total savings of $2.8million/year for the entire LT cohort. For trauma patients requiring prolonged ventilator support, early tracheostomy should be performed.
-
Traumatic brain injury (TBI) and its consequences represent one of the leading causes of death in young adults. This lesion mediates glial activation and the release of harmful molecules and causes brain edema, axonal injury, and functional impairment. Since glial activation plays a key role in the development of this damage, it seems that controlling it could be beneficial and could lead to neuroprotective effects. ⋯ We hypothesized that the ECS could be involved in the neuroprotective effects of minocycline. To address this hypothesis, we used a murine TBI model in combination with selective CB1 and CB2 receptor antagonists (AM251 and AM630, respectively). The results provided the first evidence for the involvement of ECS in the neuroprotective action of minocycline on brain edema, neurological impairment, diffuse axonal injury, and microglial activation, since all these effects were prevented by the CB1 and CB2 receptor antagonists.
-
Frontiers in neurology · Jan 2015
ReviewCathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate.
There is currently no therapeutic drug treatment for traumatic brain injury (TBI) despite decades of experimental clinical trials. This may be because the mechanistic pathways for improving TBI outcomes have yet to be identified and exploited. As such, there remains a need to seek out new molecular targets and their drug candidates to find new treatments for TBI. ⋯ Significantly, chemical inhibitors of cathepsin B are effective for improving deficits in TBI and related injuries including ischemia, cerebral bleeding, cerebral aneurysm, edema, pain, infection, rheumatoid arthritis, epilepsy, Huntington's disease, multiple sclerosis, and Alzheimer's disease. The inhibitor E64d is unique among cathepsin B inhibitors in being the only compound to have demonstrated oral efficacy in a TBI model and prior safe use in man and as such it is an excellent tool compound for preclinical testing and clinical compound development. These data support the conclusion that drug development of cathepsin B inhibitors for TBI treatment should be accelerated.