Articles: traumatic-brain-injuries.
-
Traumatic brain injury (TBI) is an important health concern in the society. Previous studies have suggested that necroptosis occurs following TBI. However, the underlying mechanisms and roles of necroptosis are not well understood. In this study, we aimed to assess the role of receptor-interacting serine/threonine-protein kinase 3 (RIP3)-mediated necroptosis after TBI both in vitro and in vivo. ⋯ These data demonstrate that RIP3 inhibition could improve the prognosis of TBI, based on the attenuation of inflammation by switching RIP3-dependent necroptosis to cysteinyl aspartate specific proteinase-8-dependent apoptosis.
-
Critical care medicine · Jul 2024
Effect of Increasing Blood Pressure on Brain Tissue Oxygenation in Adults After Severe Traumatic Brain Injury.
To examine if increasing blood pressure improves brain tissue oxygenation (PbtO 2 ) in adults with severe traumatic brain injury (TBI). ⋯ MAP augmentation after severe TBI resulted in four distinct PbtO 2 response patterns, including PbtO 2 improvement and cerebral hypoxia. Traditionally considered clinical factors were not significant, but cerebral autoregulation status and ICP responses may have moderated MAP and ETCO 2 effects on PbtO 2 response. Further study is needed to examine the role of MAP augmentation as a strategy to improve PbtO 2 in some patients.
-
Curr Pain Headache Rep · Jul 2024
ReviewCan Long-Term Outcomes of Posttraumatic Headache be Predicted?
Headache is one of the most common symptoms of traumatic brain injury, and it is more common in patients with mild, rather than moderate or severe, traumatic brain injury. Posttraumatic headache can be the most persistent symptom of traumatic brain injury. In this article, we review the current understanding of posttraumatic headache, summarize the current knowledge of its pathophysiology and treatment, and review the research regarding predictors of long-term outcomes. ⋯ To date, posttraumatic headache has been treated based on the semiology of the primary headache disorder that it most resembles, but the pathophysiology is likely to be different, and the long-term prognosis differs as well. No models exist to predict long-term outcomes, and few studies have highlighted risk factors for the development of acute and persistent posttraumatic headaches. Further research is needed to elucidate the pathophysiology and identify specific treatments for posttraumatic headache to be able to predict long-term outcomes. In addition, the effect of managing comorbid traumatic brain injury symptoms on posttraumatic headache management should be further studied. Posttraumatic headache can be a persistent symptom of traumatic brain injury, especially mild traumatic brain injury. It has traditionally been treated based on the semiology of the primary headache disorder it most closely resembles, but further research is needed to elucidate the pathophysiology of posttraumatic headache and determine risk factors to better predict long-term outcomes.
-
Traumatic brain injury (TBI) is a highly prevalent and potentially severe medical condition. Challenges regarding TBI management are related to accurate diagnostics, defining its severity, and establishing prompt interventions to affect outcomes. Among the health care components in the TBI handling strategy is intracranial pressure (ICP) monitoring, which is fundamental to therapy decisions. However, ICP monitoring is an Achilles tendon, imposing a significant financial burden on health care systems, particularly in middle and low-income communities. This article arises from the understanding from the authors that there is insufficient scientific evidence about the potential economic impacts from the use of noninvasive technologies in the monitoring of TBI. Based on personal experience, as well as from reading other, clinically focused studies, the thesis is that the use of such technologies could greatly affect the health care system and this article seeks to address this lack of literature, show ways in which such systems could be evaluated, and show estimations of possible results from these investigations. ⋯ TBI prevalence has increased with a disproportionate health care burden in the last decades. Noninvasive monitoring techniques seem to be effective in reducing TBI health care costs, with few limitations, especially the need for more supporting scientific evidence. The undeniable clinical and financial potential of these techniques is compelling to further investigate their role in TBI management, as well as the creation of more comprehensive monitoring models to the understanding of complex phenomena occurring in the injured brain.
-
Journal of neurotrauma · Jul 2024
Posttraumatic Transient Neurologic Dysfunction: A Proposal for Pathophysiology.
Unexplained neurological deterioration is occasionally observed in patients with traumatic brain injuries (TBIs). We aimed to describe the clinical features of post-traumatic transient neurological dysfunction and provide new insight into its pathophysiology. We retrospectively collected data from patients with focal neurological deterioration of unknown origin during hospitalization for acute TBI for 48 consecutive months. ⋯ Transient neurological dysfunction (TND) can occur during the acute phase of TBI. Although TND may last longer than a typical transient ischemic attack or seizure, it eventually resolves regardless of treatment. Based on our observation, we postulate that this is a manifestation of spreading depolarization occurring in the injured brain, which is analogous to migraine aura.