Articles: traumatic-brain-injuries.
-
Journal of neurotrauma · Jan 2017
ReviewGlutamate neurotransmission in rodent models of traumatic brain injury.
Traumatic brain injury (TBI) is a leading cause of death and disability in people younger than 45 and is a significant public health concern. In addition to primary mechanical damage to cells and tissue, TBI involves additional molecular mechanisms of injury, termed secondary injury, that continue to evolve over hours, days, weeks, and beyond. The trajectory of recovery after TBI is highly unpredictable and in many cases results in chronic cognitive and behavioral changes. ⋯ Diffusion of glutamate outside the synapse due to impaired uptake may lead to increased extrasynaptic glutamate signaling, secondary injury through activation of cell death pathways, and loss of fidelity and specificity of synaptic transmission. Coordination of glutamate release and uptake is critical to regulating synaptic strength, long-term potentiation and depression, and cognitive processes. In this review, we will discuss dysregulation of extracellular glutamate and glutamate uptake in the acute stage of TBI and how failure to resolve acute disruptions in glutamate homeostatic mechanisms may play a causal role in chronic cognitive symptoms after TBI.
-
Journal of neurotrauma · Jan 2017
Greater attention to task-relevant threat due to orbitofrontal lesion.
Injury to the orbitofrontal cortex (OFC) is a frequent consequence of head injury and may lead to dysfunctional regulation of emotional and social behavior. Dysfunctional emotional behavior may partly be related to the role of the OFC in emotion-attention interaction, as reported previously. In order to better understand its role in emotion-attention and emotion-cognitive control interactions, we investigated attention allocation to task-relevant and task-irrelevant threat-related emotional stimuli during a task requiring cognitive control in patients with lesion to the OFC. ⋯ This study provides new evidence for the role of the OFC in emotion-attention and emotion-cognitive control interactions. Further, the OFC seems to contribute to the balance between voluntary and involuntary attention networks in context of emotional stimuli. Better understanding of alterations in emotion-attention interaction offers insight into affective dysfunction due to OFC lesion.
-
Journal of neurotrauma · Jan 2017
The therapeutic efficacy of environmental enrichment and methylphenidate alone and in combination after controlled cortical impact injury.
Environmental enrichment (EE) and methylphenidate (MPH) independently confer significant benefit to behavioral recovery after controlled cortical impact (CCI) injury. Given that combinational therapies may be more clinically translatable than monotherapies, the aim of the current study was to test the hypothesis that a combined treatment regimen of EE and MPH would provide greater therapeutic efficacy than either one alone. Anesthetized adult male rats received either a CCI of moderate severity or sham injury and were then randomly assigned to EE or standard (STD) housing where they received either intraperitoneal (ip) MPH (5 mg/kg) or vehicle (VEH; 1.0 mL/kg; ip) beginning 24 h after injury and once daily for 19 days. ⋯ In addition, both EE groups performed significantly better than the TBI+STD+MPH group (p < 0.05), but did not differ from one another (p > 0.05). These data replicate previous findings that both EE and MPH confer cognitive benefits after TBI and extend the findings by revealing that combining EE and MPH does not produce effects greater than either treatment alone, which does not support the hypothesis. The lack of an additive effect may be because of the robustness of the EE.
-
Epilepsy is a common and debilitating consequence of traumatic brain injury (TBI). Seizures contribute to progressive neurodegeneration and poor functional and psychosocial outcomes for TBI survivors, and epilepsy after TBI is often resistant to existing anti-epileptic drugs. The development of post-traumatic epilepsy (PTE) occurs in a complex neurobiological environment characterized by ongoing TBI-induced secondary injury processes. Neuroinflammation is an important secondary injury process, though how it contributes to epileptogenesis, and the development of chronic, spontaneous seizure activity, remains poorly understood. A mechanistic understanding of how inflammation contributes to the development of epilepsy (epileptogenesis) after TBI is important to facilitate the identification of novel therapeutic strategies to reduce or prevent seizures. BODY: We reviewed previous clinical and pre-clinical data to evaluate the hypothesis that inflammation contributes to seizures and epilepsy after TBI. Increasing evidence indicates that neuroinflammation is a common consequence of epileptic seizure activity, and also contributes to epileptogenesis as well as seizure initiation (ictogenesis) and perpetuation. Three key signaling factors implicated in both seizure activity and TBI-induced secondary pathogenesis are highlighted in this review: high-mobility group box protein-1 interacting with toll-like receptors, interleukin-1β interacting with its receptors, and transforming growth factor-β signaling from extravascular albumin. Lastly, we consider age-dependent differences in seizure susceptibility and neuroinflammation as mechanisms which may contribute to a heightened vulnerability to epileptogenesis in young brain-injured patients. ⋯ Several inflammatory mediators exhibit epileptogenic and ictogenic properties, acting on glia and neurons both directly and indirectly influence neuronal excitability. Further research is required to establish causality between inflammatory signaling cascades and the development of epilepsy post-TBI, and to evaluate the therapeutic potential of pharmaceuticals targeting inflammatory pathways to prevent or mitigate the development of PTE.
-
Randomized Controlled Trial
The efficacy of prospective memory rehabilitation plus metacognitive skills training for adults with traumatic brain injury: study protocol for a randomized controlled trial.
Impairment of prospective memory (PM) is common following traumatic brain injury (TBI) and negatively impacts on independent living. Compensatory approaches to PM rehabilitation have been found to minimize the impact of PM impairment in adults with TBI; however, poor self-awareness after TBI poses a major barrier to the generalization of compensatory strategies in daily life. Metacognitive skills training (MST) is a cognitive rehabilitation approach that aims to facilitate the development of self-awareness in adults with TBI. This paper describes the protocol of a study that aims to evaluate the efficacy of a MST approach to compensatory PM rehabilitation for improving everyday PM performance and psychosocial outcomes after TBI. ⋯ This study seeks to determine the efficacy of COMP-MST for improving and maintaining everyday PM performance and level of psychosocial integration in adults with moderate to severe TBI. The findings will advance theoretical understanding of the role of self-awareness in compensatory PM rehabilitation and skills generalization. COMP-MST has the potential to reduce the cost of rehabilitation and lifestyle support following TBI because the intervention could enhance generalization success and lifelong application of PM compensatory strategies.