Articles: traumatic-brain-injuries.
-
Journal of neurotrauma · Oct 2016
The serum phosphorylated neurofilament heavy subunit as a predictive marker for outcome in adult patients after traumatic brain injury.
The serum phosphorylated neurofilament heavy subunit (pNF-H) is a nervous system-specific protein that is released from damaged neural tissue after traumatic brain injury (TBI). The aim of this study was to elucidate the usefulness of serum pNF-H as a predictive marker for the outcome of patients after TBI. Patients with TBI (Glasgow Coma Scale score of 13 or less on admission) were included. ⋯ The optimal cutoff value was 240 pg/mL, and the area under the curve in the receiver operating characteristic analysis was 0.930. The serum pNF-H value at 72 h after injury was correlated with an unfavorable outcome (vegetative state or death) at 6 months (p < 0.01) with a cutoff value of 80 pg/mL. Collectively, the results of this study indicate that the serum pNF-H value is a useful predictive marker for patient outcome after TBI.
-
Journal of neurotrauma · Oct 2016
Minor Functional Deficits in Basic Response Patterns for Reinforcement following Frontal Traumatic Brain Injury in Rats.
Traumatic brain injury (TBI) is a major contributor to numerous psychiatric conditions and chronic behavioral dysfunction. Recent studies in experimental brain injury have begun to adopt operant methodologies to assess these deficits, all of which rely on the process of reinforcement. No studies have directly examined how reinforced behaviors are affected by TBI, however. ⋯ Further, injured rats were specifically impaired at lower response requirements on the progressive ratio. Taken together, these findings indicate that simple reinforced behaviors are mostly unaffected after TBI, except in the case of variable ratio schedules, but the altered performance on the higher-order progressive ratio schedule suggests changes involving motivation or potentially perseveration. These findings validate operant measures of more complex behaviors for brain injury, all of which rely on reinforcement and can be taken into consideration when adapting and developing novel functional assessments.
-
Journal of neurotrauma · Oct 2016
Ultrastructure of diaschisis lesions following traumatic brain injury.
We used controlled cortical impact in mice to model human traumatic brain injury (TBI). Local injury was accompanied by distal diaschisis lesions that developed within brain regions anatomically connected to the injured cortex. At 7 days after injury, histochemistry documented broadly distributed lesions, particularly in the contralateral cortex and ipsilateral thalamus and striatum. ⋯ Cell bodies and processes that were silver positive at the light microscopy level showed hydropic disintegration consisting of: loss of nuclear heterochromatin; dilated somal and neuritic processes with a paucity of filaments, tubules, and mitochondria; and increased numbers of electron-dense membranous structures. Importantly the cell membrane itself was still intact 3 weeks after injury. Although the full biochemical nature of these lesions remains to be deciphered, the morphological preservation of damaged neurons and processes raises the question of whether this is a reversible process.
-
Traumatic brain injury (TBI) is a major cause of morbidity and mortality world-wide and can result in persistent cognitive, sensory and behavioral dysfunction. Understanding the time course of TBI-induced pathology is essential to effective treatment outcomes. We induced TBI in rats using an impact acceleration method and tested for sensorimotor skill and sensory sensitivity behaviors for two weeks to find persistently poor outcomes post-injury. ⋯ Further, there were abnormalities in temporal response patterns such that in layers 3-5 there was a temporal broadening of response patterns in response to both whisker deflection stimulus types and in L2 a narrowing of temporal patterns in response to the complex stimulus. Thus, at two weeks post-TBI, supragranular hypo-excitation has evolved to include deep cortical layers likely as a function of progressive atrophy and neurodegeneration. These results are consistent with the hypothesis that TBI alters the delicate excitatory/inhibitory balance in cortex and likely contributes to temporal broadening of responses and restricts the ability to code for complex sensory stimuli.
-
Journal of neurotrauma · Oct 2016
White matter injury susceptibility via fiber strain evaluation using whole-brain tractography.
Microscale brain injury studies suggest axonal elongation as a potential mechanism for diffuse axonal injury (DAI). Recent studies have begun to incorporate white matter (WM) structural anisotropy in injury analysis, with initial evidence suggesting improved injury prediction performance. In this study, we further develop a tractography-based approach to analyze fiber strains along the entire lengths of fibers from voxel- or anatomically constrained whole-brain tractography. ⋯ As an illustration, we evaluate the DAI susceptibilities of WM voxels and transcallosal fiber tracts in three idealized head impacts. Findings suggest the potential importance of the tractography-based approach for injury prediction. These efforts may enable future studies to correlate WM mechanical responses with neuroimaging, cognitive alteration, and concussion, and to reveal the relative vulnerabilities of neural pathways and identify the most vulnerable ones in real-world head impacts.