Articles: neuropathic-pain.
-
Journal of neurotrauma · Feb 2021
L5 spinal nerve axotomy induces distinct electrophysiological changes in axotomized L5- and adjacent nociceptive L4-dorsal root ganglion neurons in rats in vivo.
Peripheral neuropathic pain (PNP) is a major health problem for which effective drug treatment is lacking. Its underlying neuronal mechanisms are still illusive, but pre-clinical studies using animal models of PNP including the L5-spinal nerve axotomy (L5-SNA) model, suggest that it is partly caused by excitability changes in dorsal root ganglion (DRG) neurons. L5-SNA results in two DRG neuronal groups: (1) axotomized/damaged neurons in L5- plus some in L4-DRGs, and (2) ipsilateral L4-neurons with intact/uninjured fibers intermingling with degenerating L5-fibers. ⋯ We also found several changes in axotomized L5-neurons but not in L4-nociceptive neurons, and some changes in L4-nociceptive but not L5-neurons. The faster AP kinetics (decreased refractory period) in L4-nociceptive neurons that are consistent with their reported hyperexcitability may lead to repetitive firing and thus provide enhanced afferent input necessary for initiating and/or maintaining PNP development. The changes in axotomized L5-neurons may contribute to the central mechanisms of PNP via enhanced neurotransmitter release in the central nervous system (CNS).
-
The posterior insula (PI) has been proposed as a potential neurostimulation target for neuropathic pain relief as it represents a key-structure in pain processing. However, currently available data remain inconclusive as to efficient stimulation parameters. ⋯ These data indicate that 50 Hz IS could be a better candidate to control neuropathic pain.
-
Neuropathic Pain in Children with Sickle Cell Disease: The Hidden Side of the Vaso-Occlusive Crisis.
The majority of hospitalizations of patients with sickle cell disease (SCD) are related to painful vaso-occlusive crises (VOCs). Although the pain of VOC is classically nociceptive, neuropathic pain (NP) has also been demonstrated in SCD patients. The aim of our study is to specify the prevalence of NP during VOCs in SCD children using a dedicated scale and to measure its characteristics. ⋯ The median age, the sex ratio, the location of the pain, and the morphine consumption were similar for patients with and without NP. Our study shows that neuropathic pain is very common during VOCs in SCD children. The absence of identified risk factors should prompt us to be vigilant regardless of the patient's age, sex, and clinical presentation.
-
Spinal cord stimulation (SCS) is an effective method to treat neuropathic pain; however, it is challenging to compare different stimulation modalities in an individual patient, and thus, it is largely unknown which of the many available SCS modalities is most effective. Specifically, electrodes leading out through the skin would have to be consecutively connected to different, incompatible SCS devices and be tested over a time period of several weeks or even months. The risk of wound infections for such a study would be unacceptably high and blinding of the trial difficult. The PARS-trial seizes the capacity of a new type of wireless SCS device, which enables a blinded and systematic intra-patient comparison of different SCS modalities over extended time periods and without increasing wound infection rates. ⋯ Combining paresthesia-free SCS modalities with wireless SCS offers a unique opportunity for a blinded and systematic comparison of different SCS modalities in individual patients. This trial will advance our understanding of the clinical effectiveness of the most relevant SCS paradigms.
-
The present study was designed to investigate whether the antinociceptive effect of bone marrow-derived mesenchymal stem/stromal cells (MSC) during oxaliplatin (OXL)-induced sensory neuropathy is related to antioxidant properties. ⋯ MSC induce reversion of sensory neuropathy induced by OXL possibly by activation of anti-inflammatory and antioxidant pathways, leading to reestablishment of redox homeostasis in the spinal cord.