Articles: neuropathic-pain.
-
The objective of this review was to merge current treatment guidelines and best practice recommendations for management of neuropathic pain into a comprehensive algorithm for primary physicians. The algorithm covers assessment, multidisciplinary conservative care, nonopioid pharmacological management, interventional therapies, neurostimulation, low-dose opioid treatment, and targeted drug delivery therapy. ⋯ The presented treatment algorithm provides clear-cut tools for the assessment and treatment of neuropathic pain based on international guidelines, published data, and best practice recommendations. It defines the benefits and limitations of the current treatments at our disposal. Additionally, it provides an easy-to-follow visual guide of the recommended steps in the algorithm for primary care and family practitioners to utilize.
-
The present study aimed to investigate cerebral metabolic changes in a neuropathic pain model following deafferentation. A total of 24 Sprague-Dawley rats were included for modeling of right brachial plexus avulsion (BPA) through the posterior approach. As nerve injury would cause central sensitization and facilitate pain sensitivity in other parts of the body, thermal withdrawal latency (TWL) of the intact forepaw was assessed to investigate the level of pain perception following BPA-induced neuropathic pain. [Fluorine-18]-fluoro-2-deoxy-d-glucose (18F-FDG) positron emission tomography (PET) was applied to the brain before and after brachial plexus avulsion to explore metabolic changes in neuropathic pain following deafferentation. ⋯ Conversely, SUVs in multiple brain regions decreased, including the contralateral somatosensory cortex, ipsilateral cingulate cortex, and ipsilateral temporal association cortex. The Pearson correlation analysis showed that the SUVs of the contralateral anterodorsal hippocampus and ipsilateral dorsolateral thalamus were negatively related to the TWL of the intact forepaw, whereas the SUVs in the contralateral somatosensory cortex and ipsilateral cingulate cortex were positively related to it (p < 0.05). These findings indicate that upregulation of metabolism in the anterodorsal hippocampus and dorsolateral thalamus and downregulation metabolism in the contralateral somatosensory cortex and ipsilateral cingulate cortex could be a unique pattern of metabolic changes for neuropathic pain following brachial plexus avulsion.
-
The expression of potassium ion channel subunit 1.2 (Kv1.2) in the dorsal root ganglion (DRG) influences the excitability of neurons, which contributes to the induction and development of neuropathic pain (NPP); however, the molecular mechanisms underlying the downregulation of Kv1.2 in NPP remain unknown. Histone deacetylase (HDAC) inhibitors are reported to attenuate the development of pain hypersensitivity in rats with NPP. Whether HDAC inhibitors contribute to regulation of Kv1.2 expression, and which specific HDAC subunit is involved in NPP, remain unexplored. ⋯ Furthermore, treatment with HDAC2, but not HDAC1, siRNA also relieved mechanical and thermal hypersensitivity and upregulated the Kv1.2 expression in this model. In vitro transfection of PC12 cells with HDAC2 and HDAC1 siRNA confirmed that only HDAC2 siRNA could regulate the expression of Kv1.2. These findings suggest that HDAC2, but not HDAC1, is involved in NPP through regulation of Kv1.2 expression.
-
Peripheral nerve injury elicits an enduring increase in the excitability of the spinal dorsal horn. This change, which contributes to the development of neuropathic pain, is a consequence of release and prolonged exposure of dorsal horn neurons to various neurotrophins and cytokines. We have shown in rats that nerve injury increases excitatory synaptic drive to excitatory neurons but decreases drive to inhibitory neurons. ⋯ We show that CSF-1 increases excitatory drive to excitatory dorsal horn neurons via BDNF activation of postsynaptic TrkB and presynaptic TrkB and p75 neurotrophin receptors. CSF-1 decreases excitatory drive to inhibitory neurons via a BDNF-independent processes. This completes missing steps in understanding how peripheral injury instigates central sensitization and the onset of neuropathic pain.
-
Neuropathic pain (NP) is one of the main challenges towards NP syndrome treatment. miR-340-5p exhibit different expression levels in NP models. Its effects on NP remained unclear. The objective of this study was to explore the potential regulation mechanisms of miR-340-5p in NP. ⋯ miR-340-5p alleviated CCI-induced NP by targeting Rap1A. miR-340-5p and Rap1A may be the potential treatment targets for NP therapeutics.