Articles: neuropathic-pain.
-
Spinal cord stimulation (SCS) has been shown to be effective in the management of certain neuropathic pain conditions, however, the underlying mechanisms are incompletely understood. In this study, we investigated repetitive SCS in a rodent neuropathic pain model, revealing long-lasting and incremental attenuation of hyperalgesia and a mechanism of action involving endocannabinoids. ⋯ Alternative parameters for repetitive spinal cord stimulation (SCS) at 25/10 Hz elicit particularly long-lasting and incremental reversal of hyperalgesia in a neuropathic pain model through a mechanism involving endocannabinoids.
-
Neuropathic pain is common and debilitating with limited effective treatments. Macrophage/microglial activation along ascending somatosensory pathways following peripheral nerve injury facilitates neuropathic pain. However, polarization of macrophages/microglia in neuropathic pain is not well understood. Photobiomodulation treatment has been used to decrease neuropathic pain, has anti-inflammatory effects in spinal injury and wound healing models, and modulates microglial polarization in vitro. Our aim was to characterize macrophage/microglia response after peripheral nerve injury and modulate the response with photobiomodulation. ⋯ Photobiomodulation effectively reduced mechanical hypersensitivity, potentially through modulating macrophage/microglial activation to an anti-inflammatory phenotype.
-
Small fibres in the skin are vulnerable to damage in metabolic or toxic conditions such as diabetes mellitus or chemotherapy resulting in small fibre neuropathy and associated neuropathic pain. Whether injury to the most distal portion of sensory small fibres due to a primary dermatological disorder can cause neuropathic pain is still unclear. Recessive dystrophic epidermolysis bullosa (RDEB) is a rare condition in which mutations of proteins of the dermo-epidermal junction lead to cycles of blistering followed by regeneration of the skin. ⋯ Autonomic nervous system testing revealed no abnormalities in heart rate and blood pressure variability however the sympathetic skin response of the foot was impaired and sweat gland innervation was reduced. We conclude that chronic cutaneous injury can lead to injury and dysfunction of the most distal part of small sensory fibres in a length-dependent distribution resulting in disabling neuropathic pain. These findings also support the use of neuropathic pain screening tools in these patients and treatment algorithms designed to target neuropathic pain.
-
Despite considerable advances in understanding mechanisms involved in chronic pain, effective treatment remains elusive. Comorbid conditions including anxiety, depression, and cognitive impairment further impact quality of life. Chronic pain is associated with reversible changes in brain anatomy and function and with long-term changes in gene expression. ⋯ S-adenosylmethionine completely blocked nerve injury-induced cognitive impairment and attenuated SNI-induced decreases in global DNA methylation in the frontal cortex. In summary, chronic oral administration of the methyl donor, SAM, attenuated sensory and cognitive symptoms associated with nerve injury in mice. These effects may be mediated, in part, through modulation of DNA methylation in the central nervous system by systemic administration of the methyl donor SAM.
-
Annals of neurosciences · May 2017
Folic Acid Modulates Matrix Metalloproteinase-2 Expression, Alleviates Neuropathic Pain, and Improves Functional Recovery in Spinal Cord-Injured Rats.
The molecular underpinnings of spinal cord injury (SCI) associated with neuropathic pain (NP) are unknown. Recent studies have demonstrated that matrix metalloproteinases (MMPs) such as MMP2 play a critical role in inducing NP following SCI. Promoter methylation of MMPs is known to suppress their transcription and reduce NP. In this context, it has been shown in rodents that folic acid (FA), an FDA approved dietary supplement and key methyl donor in the central nervous system (CNS), increases axonal regeneration and repair of injured CNS in part via methylation. ⋯ Together, these data suggest that FA could alleviate NP and improve functional recovery post-SCI, possibly by reducing the expression of MMP2. Further studies will open up a novel and easy natural therapy, ideal for clinical translation with minimal side effects, for managing SCI-induced NP. Such studies might also throw light on a possible epigenetic mechanism in FA-induced recovery after SCI.