Articles: neuropathic-pain.
-
Chemokine axis chemokine C-X-C motif ligand 12/C-X-C chemokine receptor type 4 (CXCL12/CXCR4) is an emerging pain modulator, but mechanisms for its involvement in neuropathic pain remain unclear. Here, we aimed to study whether CXCL12/CXCR4 axis modulated the development of neuropathic pain via glial mechanisms. In this study, two mouse models of neuropathic pain, namely partial sciatic nerve ligation (pSNL) model and chronic post-ischemia pain (CPIP) model, were used. ⋯ This study demonstrates the crosstalk between astrocytic CXCL12 and microglial CXCR4 in the pathogenesis of neuropathic pain using pSNL and CPIP models. Our results offer insights for the future research on CXCL12/CXCR4 axis and neuropathic pain therapy.
-
Voltage-gated sodium channels, which are involved in pain pathways, have emerged as major targets for therapeutic intervention in pain disorders. Nav1.7, the tetrodotoxin-sensitive voltage-gated sodium channel isoform encoded by SCN9A and predominantly expressed in pain-sensing neurons in the dorsal root ganglion, plays a crucial role in nociception. MicroRNAs are highly conserved, small non-coding RNAs. ⋯ We also observed that miR-30b decreased Nav1.7 expression in PC12 cells. Taken together, our results suggest that miR-30b plays an important role in neuropathic pain by regulating Nav1.7 expression. Therefore, miR-30b may be a promising target for the treatment of chronic neuropathic pain.
-
Med. Clin. North Am. · Jan 2016
ReviewThe Role of Invasive Pain Management Modalities in the Treatment of Chronic Pain.
Invasive analgesic therapies provide an alternative to medical management of chronic pain. With the increasing incidence of chronic pain not only in the United States but worldwide, more therapies have evolved to address the growing need for pain relief options. These therapies include spinal injections, nerve blocks, radiofrequency ablation, neurostimulation, and intrathecal drug delivery.
-
Expert Opin Investig Drugs · Jan 2016
ReviewNovel sodium channel antagonists in the treatment of neuropathic pain.
Effective and safe drugs for the treatment of neuropathic pain are still an unmet clinical need. Neuropathic pain, caused by a lesion or disease that affects the somatosensory system, is a debilitating and hampering condition that has a great economic cost and, above all, a tremendous impact on the quality of life. Sodium channels are one of the major players in generating and propagating action potentials. They represent an appealing target for researchers involved in the development of new and safer drugs useful in the treatment of neuropathic pain. The actual goal for researchers is to target sodium channels selectively to stop the abnormal signaling that characterizes neuropathic pain while leaving normal somatosensory functions intact. ⋯ There have been serious efforts by both the pharmaceutical industry and academia to develop new and safer therapeutic options for neuropathic pain. A number of different strategies have been undertaken; the main efforts directed towards the identification of selective blockers starting from both natural products or screening chemical libraries. At this time, researchers have identified and characterized selective compounds against NaV1.7 or NaV1.8 voltage-gated sodium channels but only time will tell if they reach the market.
-
Anesthesia and analgesia · Jan 2016
Inhibition of Mitochondrial Fission Protein Reduced Mechanical Allodynia and Suppressed Spinal Mitochondrial Superoxide Induced by Perineural Human Immunodeficiency Virus gp120 in Rats.
Mitochondria play an important role in many cellular and physiologic functions. Mitochondria are dynamic organelles, and their fusion and fission regulate cellular signaling, development, and mitochondrial homeostasis. The most common complaint of human immunodeficiency virus (HIV)-sensory neuropathy is pain on the soles in patients with HIV, but the exact molecular mechanisms of HIV neuropathic pain are not clear. In the present study, we investigated the role of mitochondrial dynamin-related protein 1 (Drp1, a GTPase that mediates mitochondrial fission) in the perineural HIV coat glycoprotein gp120-induced neuropathic pain state. ⋯ These data suggest that mitochondrial division plays a substantial role in the HIV gp120-related neuropathic pain state through mitochondrial reactive oxygen species and provides evidence for a novel approach to treating chronic pain in patients with HIV.