Articles: neuropathic-pain.
-
VGF (nonacronymic) is a neuropeptide precursor that plays multiple roles in regulation of energy balance, reproduction, hippocampal synaptic plasticity, and pain. Data from a number of pain models showed significant up-regulation of VGF in sensory neurons. TLQP-21, one of the VGF-derived neuropeptides, has been shown to induce a hyperalgesic response when injected subcutaneously into the hind paw of mice. ⋯ Furthermore, application of the gC1qR-neutralizing antibody to rats with partial sciatic nerve ligation resulted in a delayed onset of nerve injury-associated mechanical hypersensitivity. These results indicate that gC1qR is the receptor for TLQP-21 and plays an important role in chronic pain through activation of macrophages. Because direct association between TLQP-21 and gC1qR is required for activation of macrophages and causes hypersensitivity, disrupting this interaction may be a useful new approach to develop novel analgesics.
-
Neuroscience letters · Nov 2013
Oral gabapentin treatment accentuates nerve and peripheral inflammatory responses following experimental nerve constriction in Wistar rats.
Gabapentin (GBP) is an anti-convulsive drug often used as analgesic to control neuropathic pain. This study aimed at evaluating whether oral GBP treatment could improve nerve inflammation response after sciatic nerve constriction in association with selected pain and motor spontaneous behavior assessments in Wistar rats. We evaluated nerve myeloperoxidase (MPO) and inflammatory cytokines on the 5th day post-injury, time in which nerve inflammation is ongoing. ⋯ GBP (120mg/kg) reduced the anti-inflammatory cytokine IL-10 nerve levels compared with the CCSN saline group. Furthermore, GBP (60 and 120mg/kg) increased carrageenan-induced paw edema and peritoneal macrophage migration compared with the CCSN saline group. Altogether our findings suggest that GBP accentuates nerve and peripheral inflammatory response, however confirmed its analgesic effect likely due to an independent CNS-mediated mechanism, and raise some concerns about potential GBP inflammatory side effects in widespread clinical use.
-
Journal of pain research · Nov 2013
Altered resting state EEG in chronic pancreatitis patients: toward a marker for chronic pain.
Electroencephalography (EEG) may be a promising source of physiological biomarkers accompanying chronic pain. Several studies in patients with chronic neuropathic pain have reported alterations in central pain processing, manifested as slowed EEG rhythmicity and increased EEG power in the brain's resting state. We aimed to investigate novel potential markers of chronic pain in the resting state EEG of patients with chronic pancreatitis. ⋯ CP pain is associated with alterations in spontaneous brain activity, observed as a shift toward lower PAF. This shift correlates with the duration of pain, which demonstrates that PAF has the potential to be a clinically feasible biomarker for chronic pain. These findings could be helpful for assisting diagnosis, establishing optimal treatment, and studying efficacy of new therapeutic agents in chronic pain patients.
-
Distal sensory polyneuropathy (DSP) with associated neuropathic pain is the most common neurological disorder affecting patients with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Viral protein R (Vpr) is a neurotoxic protein encoded by HIV-1 and secreted by infected macrophages. Vpr reduces neuronal viability, increases cytosolic calcium and membrane excitability of cultured dorsal root ganglion (DRG) sensory neurons, and is associated with mechanical allodynia in vivo. ⋯ TrkA receptor agonist indicated that NGFacted through the TrkA receptor to block the Vpr-mediated decrease in axon outgrowth in neonatal and adult rat and fetal human DRG neurons (p<0.05). Similarly, inhibiting the lower affinity NGF receptor, p75, blocked Vpr's effect on DRG neurons. Overall, NGF/TrkA signaling or p75 receptor inhibition protects somatic sensory neurons exposed to Vpr, thus laying the groundwork for potential therapeutic options for HIV/AIDS patients suffering from DSP.
-
The regenerative capacity of the peripheral nervous system is largely related to Schwann cells undergoing proliferation and migration after injury and forming growth-supporting substrates for severed axons. Novel data show that fibroblasts to a certain extent regulate the pro-regenerative behavior of Schwann cells. In the setting of peripheral nerve injury, the fibroblasts that form the epineurium come into close contact with both Schwann cells and peripheral axons, but the potential influence on these latter two cell types has not been studied yet. ⋯ These same read-out parameters were assayed in a condition where epineurial fibroblasts were subjected to stretch-cell-stress, a mechanical stressor that plays an important role in traumatic peripheral nerve injuries. Stretch-cell-stress of epineurial fibroblasts did not further change the positive effects of conditioned media on Schwann cell migration and neurite outgrowth. From these data we conclude that an as yet unknown pro-regenerative role can be attributed to epineurial fibroblasts, implying that such cells may affect the outcome of severe peripheral nerve injury.