Articles: neuropathic-pain.
-
The exploitation of preparations of Cannabis sativa to combat pain seems to date back to time immemorial, although their psychotropic effects, which are at the bases of their recreational use and limit their therapeutic use, are at least as ancient. Indeed, it has always been different to tease apart the unwanted central effects from the therapeutic benefits of Δ⁹-tetrahydrocannabinol (THC), the main psychotropic component of cannabis. ⋯ The advantages of this approach over direct activation of cannabinoid receptors as a therapeutic strategy against neuropathic and inflammatory pain are discussed here along with its potential complications. These latter have been such that clinical success has been achieved so far more rapidly with naturally occurring THC or endocannabinoid structural analogues acting at a plethora of cannabinoid-related and -unrelated molecular targets, than with selective inhibitors of endocannabinoid enzymatic hydrolysis, thus leading to revisit the potential usefulness of "multi-target" versus "magic bullet" compounds as new analgesics.
-
Multiple groups have reported the functional cross-regulation between mu-opioid (MOP) receptor and glutamate ionotropic receptor N (GluN), and the post-synaptic association of these receptors has been implicated in the transmission and modulation of nociceptive signals. Opioids, such as morphine, disrupt the MOP receptor-GluN receptor complex to stimulate the activity of GluN receptors via protein kinase C (PKC)/Src. This increased GluN receptor activity opposes MOP receptor signalling, and via neural nitric oxide synthase (nNOS) and calcium and calmodulin regulated kinase II (CaMKII) induces the phosphorylation and uncoupling of the opioid receptor, which results in the development of morphine analgesic tolerance. ⋯ Treatments that rescue morphine from analgesic tolerance, such as GluN receptor antagonism or PKC, nNOS and CaMKII inhibitors, all induce MOP receptor-GluN receptor re-association and reduce GluN receptor/CaMKII activity. In mice treated with NMDA or suffering from neuropathic pain (induced by chronic constriction injury, CCI), GluN receptor antagonists, PKA inhibitors or certain antidepressants also diminish CaMKII activity and restore the MOP receptor-GluN receptor association. Thus, the HINT1 protein stabilises the association between MOP receptor and GluN receptor, necessary for the analgesic efficacy of morphine, and this coupling is reduced following the activation of GluN receptors, similar to what is observed in neuropathic pain.
-
The neurobiological mechanisms underlying the suppression of neuropathic pain by spinal cord stimulation (SCS) are still incompletely known. The present study aims at exploring whether the descending pain control system in the rostroventromedial medulla (RVM) exerts a role in the attenuation of neuropathic pain by SCS. Experiments were performed in the rat spared nerve injury (SNI) pain model. ⋯ In awake SNI animals, microinjection of a GABAA receptor agonist, muscimol, into the RVM significantly attenuated the antihypersensitivity effect induced by SCS while a non-selective opioid receptor antagonist, naltrexone, was ineffective. It is concluded that SCS may shift the reciprocal inhibitory and facilitatory pain modulation balance controlled by the RVM in favor of inhibition. This increase in the descending antinociceptive effect operates in concert with segmental spinal mechanisms in producing pain relief.
-
Spinal nociception can be facilitated by 5-HT2 receptors in neuropathic pain. We investigated the involvement of glutamate receptors in dorsal neuron hyperexcitation that is promoted by 5-HT2B receptor (5-HT2BR) after spinal nerve ligation (SNL) in the rat. Augmentation of C-fiber-evoked potentials by spinal superfusion with 5-HT2BR agonist BW 723C86 in nerve-ligated rats was impeded by co-administration of NMDA receptor (NMDAR) antagonist D-AP5, but not by mGluR1/5 antagonist AIDA or mGluR2/3 antagonist LY 341495. ⋯ Chronic blockade of 5-HT2BR with selective antagonist SB 204741 after SNL bilaterally decreased the following: (i) PKCγ up-regulation in synaptic fraction, (ii) phosphorylation of NMDAR subunit NR1 (serine 889) in synaptic fraction, and (iii) co-localization of both PKCγ and phosphorylated NR1 with postsynaptic marker PSD-95. Chronic delivery of SB 204741 bilaterally attenuated thermal and mechanical allodynia occurring after SNL, particularly at day 2 post injury. These findings suggest that transient activation of the PKCγ/NMDAR pathway is critically involved in 5-HT2BR-mediated facilitation in the SNL model of neuropathic pain.
-
TRPA1 is an ion channel of the TRP family that is expressed in some sensory neurons. TRPA1 activity provokes sensory symptoms of peripheral neuropathy, such as pain and paraesthesia. We have used a grease gap method to record axonal membrane potential and evoked compound action potentials (ECAPs) in vitro from human sural nerves and studied the effects of mustard oil (MO), a selective activator of TRPA1. ⋯ Capsaicin caused a profound reduction in C fibre conduction in both species but had no effect on the amplitude of the A component. Lidocaine (30 mM) depolarized rat saphenous nerves acutely, and when rat nerves were pretreated with 30 mM lidocaine to mimic the exposure of human nerves to local anaesthetic during surgery, the effects of MO were abolished whilst the effects of capsaicin were unchanged. This study demonstrates that the local anaesthetic lidocaine desensitizes TRPA1 ion channels and indicates that it may have additional mechanisms for treating neuropathic pain that endure beyond simple sodium channel blockade.