Articles: neuralgia.
-
Neuroscience letters · Feb 2019
The involvement of iron responsive element (-) divalent metal transporter 1-mediated the spinal iron overload via CXCL10/CXCR3 pathway in neuropathic pain in rats.
Iron is pivotal for life, but it is toxic if in excess. Iron overload mediated by divalent metal transporter 1 (DMT1) in the central nervous system has participated in various neuroinflammatory diseases. Chemokine-induced neuroinflammation involves the development of pathological pain. Recently, chemokine CXCL10 is implicated in the pathogenesis of chronic pain, however, little is known about the potential link between iron accumulation and CXCL10 in pain condition. Here, we examined whether iron accumulation regulated neuropathic pain via CXCL10. ⋯ Our findings demonstrated the contribution of spinal abnormal iron accumulation in regulating CXCL10 pathway in the pathogenesis of neuropathic pain.
-
Sphingosine 1-phosphate receptor 2 (S1PR2), a member of the seven-transmembrane receptor family, can be activated by its natural ligand sphingosine 1-phosphate (S1P) to initiate signal transduction and is involved in a wide range of biological effects such as immune cell migration and vascular permeability. Its relationship with neuropathic pain (NP) has not been reported. In this study, the effects of S1PR2 on the development of NP were studied. ⋯ S1PR2 deficiency could increase the pain sensitivity of a NP mouse model and promote the development of NP
-
MicroRNAs have been reported to be an important pathophysiological factor in neuropathic pain. However, the potential mechanism through which miRNAs function in neuropathic pain remains unclear. The purpose of this study was to explore the potential role of mir-34c in neuropathic pain in a mouse model of chronic constriction injury (CCI). ⋯ We also demonstrated that miR-34c suppressed the expression of NLRP3 by directly binding the 3'-untranslated region. Overexpression of miR-34c decreased the protein levels of NLRP3, ASC, caspase-1, IL-1β, and IL-18 in the spinal cord in CCI mice. Together, our results indicated that miR-34c may inhibit neuropathic pain development in CCI mice through inhibiting NLRP3-mediated neuroinflammation.
-
The aim of the current project was to evaluate the spinal cord stimulation (SCS) screening trial success rate threshold to obtain the same cost impact across two identical sets of patients following either a prolonged screening trial prior to implantation strategy or a full implant without a screening trial. ⋯ Considerable savings could be obtained by adopting an implantation strategy without a screening trial. It is plausible that accounting for other factors, such as complications that can occur with a screening trial, additional savings could be achieved by choosing a straight to implant treatment strategy. Nevertheless, additional evidence is warranted to support this claim.
-
Motor cortex stimulation (MCS) is routinely used for the treatment of chronic neuropathic pain but its effect on quality of life remains uncertain. ⋯ MCS improves quality of life in patients with chronic refractory neuropathic pain. Additional factors other than a simple analgesic effect may contribute to these results.