Articles: neuralgia.
-
Review
Circuitry and plasticity of the dorsal horn - Toward a better understanding of neuropathic pain.
Maladaptive plasticity within the dorsal horn (DH) of the spinal cord is a key substrate for development of neuropathic pain following peripheral nerve injury. Advances in genetic engineering, tracing techniques and opto-genetics are leading to a much better understanding of the complex circuitry of the spinal DH and the radical changes evoked in such circuitry by nerve injury. ⋯ Understanding which changes relate to specific disease-states is essential, and recent work has aimed to stratify patient populations in a mechanistic fashion. In this review we will discuss how such pathophysiological mechanisms may lead to the distressing sensory phenomena experienced by patients suffering neuropathic pain, and the relationship of such mechanisms to current and potential future treatment modalities.
-
Inflammatory response induced by protrused nucleus pulposus (NP) has been shown to play a crucial role in the process of radicular pain. Lipoxins represent a unique class of lipid mediators that have anti-inflammatory and pro-resolving action. The present study was undertaken to investigate if intrathecal lipoxin A4 (LXA4) could alleviate mechanical allodynia in the rat models of application of NP to the L5 dorsal root ganglion (DRG). ⋯ Intrathecal injection of LXA4 alleviated the development of neuropathic pain, inhibited the upregulation of pro-inflammatory cytokines (TNF-α and IL-1β), upregulated the expression of anti-inflammatory cytokines (TGF-β1 and IL-10) and attenuated the activation of NF-κB/p65, p-ERK, p-JNK, but not p-p38, in a dose-dependent manner. In this study, we have demonstrated that LXA4 potently alleviate radicular pain in a rat model of non-compressive lumbar disc herniation. The anti-inflammatory and pro-resolution properties of LXA4 have shown a great promise for the management of radicular pain caused by intervertebral disc herniation.
-
Infraorbital nerve constriction (CION) causes hypersensitivity to facial mechanical, heat and cold stimulation in rats and mice and is a reliable model to study trigeminal neuropathic pain. In this model there is evidence that mechanisms operated by kinin B1 and B2 receptors contribute to heat hyperalgesia in both rats and mice. Herein we further explored this issue and assessed the role of kinin receptors in mechanical hyperalgesia after CION. ⋯ Additionally, treatment with an anti-dynorphin A antiserum (200μg/5μL, s.a.) reduced CION-induced heat hyperalgesia for up to 2h. These results suggest that both kinin B1 and B2 receptors are relevant in orofacial sensory nociceptive changes induced by CION. Furthermore, they also indicate that dynorphin A could stimulate kinin receptors and this effect seems to contribute to the maintenance of trigeminal neuropathic pain.
-
Neuropathic pain is a significant unmet medical need in patients with variety of injury or disease insults to the nervous system. Neuropathic pain often presents as a painful sensation described as electrical, burning, or tingling. Currently available treatments have limited effectiveness and narrow therapeutic windows for safety. ⋯ Several studies in animal models of neuropathic pain have begun to reveal the functional contribution of dendritic spine dysgenesis in neuropathic pain. Previous reports have demonstrated three primary changes in dendritic spine structure on nociceptive dorsal horn neurons following injury or disease, which accompany chronic intractable pain: (I) increased density of dendritic spines, particularly mature mushroom-spine spines, (II) redistribution of spines toward dendritic branch locations close to the cell body, and (III) enlargement of the spine head diameter, which generally presents as a mushroom-shaped spine. Given the important functional implications of spine distribution, density, and shape for synaptic and neuronal function, the study of dendritic spine abnormality may provide a new perspective for investigating pain, and the identification of specific molecular players that regulate spine morphology may guide the development of more effective and long-lasting therapies.
-
Neuropathic pain remains a pressing clinical problem. Here, we demonstrate that a local, intrathecal (i.t.) injection of bone marrow stromal cells (BMSCs) following lumbar puncture alleviates early- and late-phase neuropathic pain symptoms, such as allodynia and hyperalgesia, for several weeks in murine chronic constriction injury (CCI) and spared nerve injury models. Moreover, i.t. ⋯ BMSCs that migrated from the injection site survived at the border of DRGs for more than 2 months. Our findings support a paracrine mechanism by which i.t. BMSCs target CXCL12-producing DRGs to elicit neuroprotection and sustained neuropathic pain relief via TGF-β1 secretion.