Articles: hyperalgesia.
-
We studied, in male Sprague Dawley rats, the role of the cognate hyaluronan receptor, CD44 signaling in the antihyperalgesia induced by high molecular weight hyaluronan (HMWH). Low molecular weight hyaluronan (LMWH) acts at both peptidergic and nonpeptidergic nociceptors to induce mechanical hyperalgesia that is prevented by intrathecal oligodeoxynucleotide antisense to CD44 mRNA, which also prevents hyperalgesia induced by a CD44 receptor agonist, A6. Ongoing LMWH and A6 hyperalgesia are reversed by HMWH. ⋯ While low molecular weight HA increases sensitivity to mechanical stimulation, high molecular weight HA reduces sensitization, attenuating inflammatory and neuropathic hyperalgesia. Both pronociceptive and antinociceptive effects of HA are mediated by activation of signaling pathways downstream CD44, the cognate HA receptor, in nociceptors. These results contribute to our understanding of the role of the extracellular matrix in pain, and indicate CD44 as a potential therapeutic target to alleviate inflammatory and neuropathic pain.
-
Histamine H3 receptors are mainly expressed on CNS neurons, particularly along the nociceptive pathways. The potential involvement of these receptors in pain processing has been suggested using H3 receptor inverse agonists. ⋯ S 38093, a new H3 antagonist/inverse agonist, displays antiallodynic and antihyperalgesic effect in neuropathic pain, especially in oxaliplatin-induced neuropathy after chronic administration. This effect of S 38093 in neuropathic pain could be partly mediated by α2 receptors desensitization in the locus coeruleus.
-
J. Pharmacol. Exp. Ther. · Jan 2018
Nicotine Prevents and Reverses Paclitaxel-Induced Mechanical Allodynia in a Mouse Model of CIPN.
Chemotherapy-induced peripheral neuropathy (CIPN), a consequence of peripheral nerve fiber dysfunction or degeneration, continues to be a dose-limiting and debilitating side effect during and/or after cancer chemotherapy. Paclitaxel, a taxane commonly used to treat breast, lung, and ovarian cancers, causes CIPN in 59-78% of cancer patients. Novel interventions are needed due to the current lack of effective CIPN treatments. ⋯ Notably, nicotine neither promoted proliferation of A549 and H460 non-small cell lung cancer cells nor interfered with paclitaxel-induced antitumor effects, including apoptosis. Most importantly, chronic nicotine administration did not enhance Lewis lung carcinoma tumor growth in C57BL/6J mice. These data suggest that the nicotinic acetylcholine receptor-mediated pathways may be promising drug targets for the prevention and treatment of CIPN.
-
Review
The Underestimated Significance of Conditioning in Placebo Hypoalgesia and Nocebo Hyperalgesia.
Placebo and nocebo effects are intriguing phenomena in pain perception with important implications for clinical research and practice because they can alleviate or increase pain. According to current theoretical accounts, these effects can be shaped by verbal suggestions, social observational learning, and classical conditioning and are necessarily mediated by explicit expectation. In this review, we focus on the contribution of conditioning in the induction of placebo hypoalgesia and nocebo hyperalgesia and present accumulating evidence that conditioning independent from explicit expectation can cause these effects. ⋯ Because only few studies have investigated clinical samples, the picture seems less clear when it comes to patient populations with chronic pain. However, conditioning appears to be a promising means to optimize treatment. In order to get a better insight into the mechanisms of placebo and nocebo effects in pain and the possible benefits of conditioning compared to explicit expectation, future studies should carefully distinguish both methods of induction.
-
Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that is expressed in the sensory neurons and responds to various noxious stimuli including heat and capsaicin. The molecular properties of TRPV1 have been clearly examined; however, there are obvious individual differences in human sensitivity to thermal stimuli and capsaicin. ⋯ The sensitivities to burning pain and capsaicin of Japanese adult subjects were compared with their TRPV1 genome sequence, and we detected 6 single-nucleotide polymorphisms and 11 single-nucleotide polymorphisms related to burning pain and capsaicin sensitivity, respectively. In particular, homozygous I585V, a single-nucleotide polymorphism with amino acid substitution, significantly related to higher capsaicin sensitivity.