Articles: hyperalgesia.
-
Randomized Controlled Trial
Low-dose buprenorphine infusion to prevent postoperative hyperalgesia in patients undergoing major lung surgery and remifentanil infusion: a double-blind, randomized, active-controlled trial.
Postoperative secondary hyperalgesia arises from central sensitization due to pain pathways facilitation and/or acute opioid exposure. The latter is also known as opioid-induced hyperalgesia (OIH). Remifentanil, a potent μ-opioid agonist, reportedly induces postoperative hyperalgesia and increases postoperative pain scores and opioid consumption. The pathophysiology underlying secondary hyperalgesia involves N-methyl-D-aspartate (NMDA)-mediated pain pathways. In this study, we investigated whether perioperatively infusing low-dose buprenorphine, an opioid with anti-NMDA activity, in patients receiving remifentanil infusion prevents postoperative secondary hyperalgesia. ⋯ Low-dose buprenorphine infusion prevents the development of secondary hyperalgesia around the surgical incision but shows no long-term efficacy at three months follow-up.
-
Upon systemic administration in rats, the prodrug L-4-chlorokynurenine (4-Cl-KYN; AV-101; VistaGen Therapeutics, Inc, South San Francisco, CA) is rapidly absorbed, actively transported across the blood-brain barrier, and converted in astrocytes to 7-chlorokynurenic acid (7-Cl-KYNA), a potent and specific antagonist of the glycine B coagonist site of the N-methyl-D-aspartate (NMDA) receptor. We examined the effects of 4-Cl-KYN in several rat models of hyperalgesia and allodynia and determined the concentrations of 4-Cl-KYN and newly produced 7-Cl-KYNA in serum, brain, and spinal cord. ⋯ Our conclusions show that after systemic delivery, the highest 2 doses (167 and 500 mg/kg) of 4-Cl-KYN yielded brain concentrations of 7-Cl-KYNA exceeding its half maximal inhibitory concentration (IC50) at the glycine B site and resulted in dose-dependent antihyperalgesia in the 4 models of facilitated processing associated with tissue inflammation and nerve injury. On the basis of the relative dose requirements for analgesic actions and side effect profiles from these experiments, 4-Cl-KYN is predicted to have antihyperalgesic efficacy and a therapeutic ratio equal to gabapentin and superior to MK-801.
-
Painful peripheral neuropathy is a common side effect of paclitaxel (PTX). The use of analgesics is an important component for management of PTX-induced peripheral neuropathy (PINP). However, currently employed analgesics have several side effects and are poorly effective. β-caryophyllene (BCP), a dietary selective CB2 agonist, has shown analgesic effect in neuropathic pain models, but its role in chemotherapy-induced neuropathic pain has not yet been investigated. ⋯ Spinal cord immunohistochemistry revealed that preventive treatment with BCP reduced p38 MAPK and NF-κB activation, as well as the increased Iba-1 and IL-1β immunoreactivity promoted by PTX. Our findings show that BCP effectively attenuated PINP, possibly through CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release. Taken together, our results suggest that BCP could be used to attenuate the establishment and/or treat PINP.
-
Brain research bulletin · Oct 2017
Downregulations of TRPM8 expression and membrane trafficking in dorsal root ganglion mediate the attenuation of cold hyperalgesia in CCI rats induced by GFRα3 knockdown.
Cold hyperalgesia is an intractable sensory abnormality commonly seen in peripheral neuropathies. Although glial cell line-derived neurotrophic factor family receptor alpha3 (GFRα3) is required for the formation of pathological cold pain has been revealed, potential transduction mechanism is poorly elucidated. We have previously demonstrated the contribution of enhanced activity of transient receptor potential melastatin 8 (TRPM8) to cold hyperalgesia in neuropathic pain using a rat model of chronic constriction injury (CCI) to the sciatic nerve. Recently, the enhancement of TRPM8 activity is attributed to the increased TRPM8 plasma membrane trafficking. In addition, TRPM8 can be sensitized by the activation of GFRα3, leading to increased cold responses in vivo. The aim of this study was to investigate whether GFRα3 could influence cold hyperalgesia of CCI rats via modulating TRPM8 expression and plasma membrane trafficking in dorsal root ganglion (DRG). ⋯ Our results demonstrate that GFRα3 knockdown specially inhibits cold hyperalgesia following CCI via decreasing the expression level and plasma membrane trafficking of TRPM8 in DRG. GFRα3 and its downstream mediator, TRPM8, represent a new analgesia axis which can be further exploited in sensitized cold reflex under the condition of chronic pain.
-
The role of nitric oxide (NO) in nociceptive transmission at the spinal cord level remains uncertain. Increased activity of spinal N-methyl-d-aspartate (NMDA) receptors contributes to development of chronic pain induced by peripheral nerve injury. In this study, we determined how endogenous NO affects NMDA receptor activity of spinal cord dorsal horn neurons in control and spinal nerve-ligated rats. ⋯ Additionally, intrathecal injection of l-arginine significantly attenuated mechanical or thermal hyperalgesia induced by nerve injury, and the l-arginine effect was diminished in rats treated with a nNOS inhibitor or nNOS-specific siRNA. These findings suggest that endogenous NO inhibits spinal NMDA receptor activity through S-nitrosylation. NO derived from nNOS attenuates spinal nociceptive transmission and neuropathic pain induced by nerve injury.