Articles: hyperalgesia.
-
Osteoarthr. Cartil. · Nov 2015
Intra-articular nerve growth factor regulates development, but not maintenance, of injury-induced facet joint pain & spinal neuronal hypersensitivity.
The objective of the current study is to define whether intra-articular nerve growth factor (NGF), an inflammatory mediator that contributes to osteoarthritic pain, is necessary and sufficient for the development or maintenance of injury-induced facet joint pain and its concomitant spinal neuronal hyperexcitability. ⋯ Findings demonstrate that NGF in the facet joint contributes to the development of injury-induced joint pain. Localized blocking of NGF signaling in the joint may provide potential treatment for joint pain.
-
Spinal ephrinB-EphB signaling is involved in the modulation of pain processing. The aim of the present study was to investigate whether protein kinase C-γ (PKCγ) acts as a downstream effector in regulating spinal pain processing associated with ephrinB-EphB signaling in mice. The intrathecal injection of ephrinB2-Fc, an EphB receptor activator, caused thermal hyperalgesia and mechanical allodynia, as well as increased activation of spinal PKCγ. ⋯ Furthermore, the intrathecal injection of EphB2-Fc, an EphB receptor blocker, suppressed formalin-induced inflammatory, chronic constriction injury (CCI)-induced neuropathic, and tibia bone cavity tumor cell implantation (TCI)-induced bone cancer pain behaviors, in addition to reducing the activation of spinal PKCγ. Finally, the intrathecal injection of MK801, an N-methyl-D-aspartate (NMDA) receptor blocker, prevented the pain behaviors and spinal PKCγ activation induced by ephrinB2-Fc. Overall, the results confirm the important role of PKCγ in the regulation of spinal pain processing associated with ephrinB-EphB signaling.
-
5-hydroxytryptamine (5-HT) released in inflammatory tissues plays a pivotal role in pain hypersensitivity. However, it is not clear whether 5-HT2A receptors in the inflamed tissues mediate this effect. The present study investigated the contribution of 5-HT2A receptors in the periphery to chronic inflammatory pain. ⋯ The local treatment of ketanserin completely inhibited CFA-induced increase in NPY expression in superficial laminae of the spinal cord. These results indicated that activation of 5-HT2A receptors in the inflamed tissues was involved in the pathogenesis of inflammatory pain and the blockade of 5-HT2A receptors in the periphery could relieve pain hypersensitivity and normalize the cellular disorder in the spinal dorsal horn associated with pathological pain. The present study suggests that the peripheral 5-HT2A receptors can be a promising target for pharmaceutical therapy to treat chronic inflammatory pain without central nervous system side effects.