Articles: hyperalgesia.
-
Relationships between the paradoxical painful and non painful sensations induced by a thermal grill.
The simultaneous application of innocuous cutaneous warm and cold stimuli with a thermal grill can induce both paradoxical pain and paradoxical warmth (heat). The goal of this study was to investigate further the relationships between these paradoxical sensations. Stimuli were applied to the palms of the right hands of 21 volunteers with a thermode consisting of 6 bars, the temperature of which was controlled by Peltier elements. ⋯ The intensities of the warmth and unpleasantness evoked by the stimuli were directly related to the magnitude of the warm-cold differential. Our results suggest that there is a continuum between the painful and nonpainful paradoxical sensations evoked by the thermal grill that may share pathophysiological mechanisms. These data also confirm the existence of strong relationships between the thermoreceptive and nociceptive systems and the utility of the thermal grill for investigating these relationships.
-
There is a strong association between migraine and depression. The aim of this study is to identify migraine-specific factors involved in this association. ⋯ This study identified allodynia, in addition to high migraine attack frequency, as a new migraine-specific factor associated with depression.
-
Spinal astrocytes have emerged as important mechanistic contributors to the genesis of mechanical allodynia (MA) in neuropathic pain. We recently demonstrated that the spinal sigma non-opioid intracellular receptor 1 (σ1 receptor) modulates p38 MAPK phosphorylation (p-p38), which plays a critical role in the induction of MA in neuropathic rats. However, the histological and physiological relationships among σ1, p-p38 and astrocyte activation is unclear. ⋯ Spinal σ1 receptors are localized in astrocytes and blockade of σ1 receptors inhibits the pathological activation of astrocytes via modulation of p-p38, which ultimately prevents the development of MA in neuropathic mice.
-
Fast Conducting Mechanoreceptors Contribute to Withdrawal Behavior in Normal and Nerve Injured Rats.
Fast-conducting myelinated high-threshold mechanoreceptors (AHTMR) are largely thought to transmit acute nociception from the periphery. However, their roles in normal withdrawal and in nerve injury-induced hyperalgesia are less well accepted. Modulation of this subpopulation of peripheral neurons would help define their roles in withdrawal behaviors. ⋯ This suggests that AHTMR neurons play a role not only in threshold-related withdrawal behavior in the normal animal, but also in sensitized states after nerve injury. This is the first time this subpopulation of neurons has been reversibly modulated to test their contribution to withdrawal-related behaviors before and after nerve injury. This technique may prove useful to define the role of selective neuronal populations in different pain states.
-
Neuroscience bulletin · Dec 2014
Post-stroke pain hypersensitivity induced by experimental thalamic hemorrhage in rats is region-specific and demonstrates limited efficacy of gabapentin.
Intractable central post-stroke pain (CPSP) is one of the most common sequelae of stroke, but has been inadequately studied to date. In this study, we first determined the relationship between the lesion site and changes in mechanical or thermal pain sensitivity in a rat CPSP model with experimental thalamic hemorrhage produced by unilateral intra-thalamic collagenase IV (ITC) injection. Then, we evaluated the efficacy of gabapentin (GBP), an anticonvulsant that binds the voltage-gated Ca(2+) channel α2δ and a commonly used anti-neuropathic pain medication. ⋯ GBP had a dose-related anti-allodynic effect after a single administration (1, 10, or 100 mg/kg) on day 7 post-ITC, with significant effects lasting at least 5 h for the higher doses. However, repeated treatment, once a day for two weeks, resulted in complete loss of effectiveness (drug tolerance) at 10 mg/kg, while effectiveness remained at 100 mg/kg, although the time period of efficacious analgesia was reduced. In addition, GBP did not change the basal pain sensitivity and the motor impairment caused by the ITC lesion, suggesting selective action of GBP on the somatosensory system.