Articles: hyperalgesia.
-
Oxaliplatin, which is used as one of anti-cancer drugs, commonly induces peripheral neuropathic pain. We have previously reported that an injection of diluted bee venom (DBV) produced a significant anti-nociceptive effects in several pain models of mice or rats. In this study, we evaluated time- and dose-dependent development of oxaliplatin-induced mechanical allodynia in bilateral hind paws of mice, and investigated the effect of DBV injection on this mechanical allodynia. ⋯ Subcutaneous pre-injection of 2% lidocaine (40 mg/kg) into the Zusanli acupoint completely blocked the anti-allodynic effect of DBV. Intrathecal pretreatment with yohimbine (25 µg/mouse), an alpha-2 adrenoceptor antagonist, also prevented the anti-allodynic effect of DBV, whereas pretreatment with naloxone (20 µg/mouse), an opioid receptor antagonist, did not block the effect of DBV. Taken together, these findings demonstrate that DBV injection into the Zusanli acupoint significantly reduces ipsilateral mechanical allodynia generated by oxaliplatin in mice, and also suggest that this anti-allodynic effect is dependent on the peripheral nerve activation in injected site and spinal cord alpha-2 adrenoceptors.
-
Several etiological reports have shown that chronic pain significantly interferes with sleep. Inadequate sleep due to chronic pain may contribute to the stressful negative consequences of living with pain. However, the neurophysiological mechanism by which chronic pain affects sleep-arousal patterns is as yet unknown. Although serotonin (5-HT) was proposed to be responsible for sleep regulation, whether the activity of 5-HTergic neurons in the dorsal raphe nucleus (DRN) is affected by chronic pain has been studied only infrequently. On the other hand, the recent development of optogenetic tools has provided a valuable opportunity to regulate the activity in genetically targeted neural populations with high spatial and temporal precision. In the present study, we investigated whether chronic pain could induce sleep dysregulation while changing the activity of DRN-5-HTergic neurons. Furthermore, we sought to physiologically activate the DRN with channelrhodopsin-2 (ChR2) to identify a causal role for the DRN-5-HT system in promoting and maintaining wakefulness using optogenetics. ⋯ These results suggest that neuropathic pain accelerates the activity of DRN-5-HTergic neurons. Although further loss-of-function experiments are required, we hypothesize that this activation in DRN neurons may, at least in part, correlate with sleep dysregulation under a neuropathic pain-like state.
-
Zhonghua yi xue za zhi · Jan 2013
Clinical Trial[Effect of dexmedetomidine in acute postoperative pain relief is independent of suppressing the hyperalgesia induced by remifentanil].
To explore the effect of dexmedetomidine in acute postoperative pain and remifentanil-induced hyperalgesia. ⋯ Dexmedetomidine can alleviate the acute postoperative pain effectively, but the effect is not dependent on inhibiting remifentanil-induced hyperalgesia.
-
Journal of pain research · Jan 2013
Reproducibility of the heat/capsaicin skin sensitization model in healthy volunteers.
Heat/capsaicin skin sensitization is a well-characterized human experimental model to induce hyperalgesia and allodynia. Using this model, gabapentin, among other drugs, was shown to significantly reduce cutaneous hyperalgesia compared to placebo. Since the larger thermal probes used in the original studies to produce heat sensitization are now commercially unavailable, we decided to assess whether previous findings could be replicated with a currently available smaller probe (heated area 9 cm(2) versus 12.5-15.7 cm(2)). ⋯ When using smaller thermal probes than originally proposed, modifications of other parameters of sensitization and/or rekindling process may be needed to allow the heat/capsaicin sensitization protocol to be used as initially intended. Standardization and validation of experimental pain models is critical to the advancement of translational pain research.
-
Paclitaxel is an antimitotic antitumour drug highly effective against a broad range of cancers considered refractory to conventional chemotherapy. One of the main serious side effects of paclitaxel treatment is the induction of peripheral neuropathic pain that often diminishes the patient's quality of life. In this study, we evaluated the severity of the neuropathy induced by paclitaxel and the inflammatory reaction in the dorsal horn of the spinal cord in young, adult and aged male CD1 mice. ⋯ Our results demonstrate that paclitaxel-induced neuropathy in mice is an age-dependent phenomenon whose severity devolves on glial response.