Articles: hyperalgesia.
-
Opioid usage for pain therapy is limited by its undesirable clinical effects, including paradoxical hyperalgesia, also known as opioid-induced hyperalgesia (OIH). However, the mechanisms associated with the development and maintenance of OIH remain unclear. Here, we investigated the effect of serotonin inhibition by the 5-HT3 receptor antagonist, ondansetron (OND), as well as serotonin deprivation via its synthesis inhibitor para-chlorophenylalanine, on mouse OIH models, with particular focus on astrocyte activation. ⋯ Our findings further suggest that serotonergic regulation in the spinal dorsal horn may be a therapeutic target of OIH. PERSPECTIVE: The current study revealed that the descending serotonergic pain-facilitatory system in the spinal dorsal horn is crucial in OIH, and that activation of astrocytes is a secondary phenotype of OIH. Our study offers new therapeutic targets for OIH and may help reduce inappropriate opioid use.
-
Recent findings indicate that nociceptive nerves are not "free", but similar to touch and pressure sensitive nerves, terminate in an end-organ in mice. This sensory structure consists of the nociceptive nerves and specialized nociceptive Schwann cells forming a mesh-like organ in subepidermis with pain transduction initiated at both these cellular constituents. The intimate relation of nociceptive nerves with nociceptive Schwann cells in mice raises the question whether defects in nociceptive Schwann cells can by itself contribute to pain hyperalgesia, nerve retraction, and peripheral neuropathy. ⋯ Conversely, ablating the nociceptive nerves led to a retraction of epidermal Schwann cell processes, changes in nociceptive Schwann cell soma morphology, heat analgesia, and mechanical hyperalgesia. Our results provide evidence for a nociceptive sensory end-organ in the human skin and using animal models highlight the interdependence of the nerve and the nociceptive Schwann cell. Finally, we show that demise of nociceptive Schwann cells is sufficient to cause neuropathic-like pain in the mouse.
-
Virtual reality (VR) has been shown to produce analgesic effects during different experimental and clinical pain states. Despite this, the top-down mechanisms are still poorly understood. In this study, we examined the influence of both a real and sham (ie, the same images in 2D) immersive arctic VR environment on conditioned pain modulation (CPM) and in a human surrogate model of central sensitization in 38 healthy volunteers. ⋯ We conclude that exposure to an immersive VR environment has no effect over acute pain thresholds but can modulate dynamic CPM responses and mechanical hypersensitivity in healthy volunteers. PERSPECTIVE: This study has demonstrated that exposure to an immersive virtual reality environment can modulate perceptual correlates of endogenous pain modulation and secondary hyperalgesia in a human surrogate pain model. These results suggest that virtual reality could provide a novel mechanism-driven analgesic strategy in patients with altered central pain processing.
-
Dopamine neurons in the periaqueductal gray (PAG)/dorsal raphe are key modulators of antinociception with known supraspinal targets. However, no study has directly tested whether these neurons contribute to descending pain inhibition. We hypothesized that PAG dopamine neurons contribute to the analgesic effect of D-amphetamine via a mechanism that involves descending modulation via the rostral ventral medulla (RVM). ⋯ This hyperalgesia was transiently restored by intra-PAG injection of eticlopride, as well as RVM microinjection of muscimol. We conclude that D-amphetamine analgesia is partially mediated by descending inhibition and that D2 receptors in the PAG are responsible for this effect via modulating neurons that project to the RVM. These results further our understanding of the antinociceptive effects of dopamine and elucidate a mechanism by which clinically available dopamine modulators produce analgesia.
-
TACAN (Tmem120A), a mechanotransducing ion channel highly expressed in a subset of nociceptors, has recently been shown to contribute to detection of noxious mechanical stimulation. In the present study we evaluated its role in sensitization to mechanical stimuli associated with preclinical models of inflammatory and chemotherapy-induced neuropathic pain (CIPN). Intrathecal administration of an oligodeoxynucleotide antisense (AS-ODN) to TACAN mRNA attenuated TACAN protein expression in rat dorsal root ganglia (DRG). ⋯ PERSPECTIVE: We evaluated the role of TACAN, a mechanotransducing ion channel in nociceptors, in preclinical models of inflammatory and CIPN. Attenuation of TACAN expression reduced hyperalgesia produced by inflammatory mediators but had not chemotherapeutic agents. Our findings support the presence of multiple mechanotransducers in nociceptors.