Articles: hyperalgesia.
-
Biochem. Biophys. Res. Commun. · Sep 2012
Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization.
Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor γ (PPAR)γ signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. ⋯ Moreover, transplantation of rosiglitazone-treated peritoneal macrophages into the incisional sites significantly attenuated hyperalgesia. We speculate that local administration of rosiglitazone significantly alleviated the development of postincisional pain, possibly through regulating macrophage polarity at the inflamed site. PPARγ signaling in macrophages may be a potential therapeutic target for the treatment of acute pain development.
-
We have assessed the mechanism underlying glial cell-derived neurotrophic factor (GDNF)-induced mechanical hyperalgesia in the gastrocnemius muscle, using patch clamp electrophysiology, in vivo electrophysiology and behavioral studies. Cultured isolectin B4-positive (IB4+) dorsal root ganglion neurons that innervated this muscle were held under current clamp; the majority developed an increase in action potential duration (a factor of increase of 2.29±0.24, compared to 1.13±0.17 in control, P<0.01) in response to GDNF (200 ng/ml) by 15 min after application. They also demonstrated a depolarization of resting membrane potential, but without significant changes in rheobase, action potential peak, or after-hyperpolarization. ⋯ This was observed in the absence of changes in the mechanical threshold. Finally, injection of iberiotoxin into the gastrocnemius muscle produced dose-dependent mechanical hyperalgesia. These data support the suggestion that GDNF induces nociceptor sensitization and mechanical hyperalgesia, at least in part, by inhibiting BK current in IB4+ nociceptors.
-
Peripheral nerve injury causes spontaneous and long-lasting pain, hyperalgesia, and allodynia. Excitatory amino acid receptor-dependent increases in descending facilitatory drive from the brainstem rostral ventromedial medulla (RVM) contribute to injury-evoked hypersensitivity. Although increased excitability likely reflects changes in synaptic efficacy, the cellular mechanisms underlying injury-induced synaptic plasticity are poorly understood. ⋯ Here, we use the spared nerve injury (SNI) model in rodents to examine this issue. We show that SNI increases RVM NP1 expression and constitutive deletion or silencing NP1 in the RVM, before or after SNI, attenuates allodynia and hyperalgesia in rats. Selective rescue of RVM NP1 expression restores behavioral hypersensitivity of knock-out mice, demonstrating a key role of RVM NP1 in the pathogenesis of neuropathic pain.
-
The manifestation of chronic, neuropathic pain includes elevated levels of the cytokine tumor necrosis factor-alpha (TNF). Previously, we have shown that the hippocampus, an area of the brain most notable for its role in learning and memory formation, plays a fundamental role in pain sensation. Using an animal model of peripheral neuropathic pain, we have demonstrated that intracerebroventricular infusion of a TNF antibody adjacent to the hippocampus completely alleviated pain. ⋯ Sensitivity to mechanical stimulation also developed bilaterally in the rat hind paws. In support of these behavioral findings, immunoreactive staining for TNF, bioactive levels of TNF, and levels of TNF mRNA per polymerase chain reaction analysis were assessed in several brain regions and found to be increased only in the hippocampus. These findings indicate that the specific elevation of TNF in the hippocampus is not a consequence of pain, but in fact induces these behaviors/symptoms.
-
Pulsed radiofrequency (PRF) procedure has been used in clinical practice for the treatment of chronic neuropathic pain conditions without neuronal damage. The purpose of this study was to investigate the changes in pain response and glial expression after the application of PRF on a dorsal root ganglion (DRG) in a neuropathic pain model. ⋯ Our result demonstrated that the mechanical hypersensitivity, induced by L5 SNL, was attenuated by a PRF procedure on the ipsilateral DRG. This analgesic effect may be associated with an attenuation of the microglial activation in the dorsal horn.