Articles: hyperalgesia.
-
Biochem. Biophys. Res. Commun. · Aug 2010
Tanshinone IIA improves impaired nerve functions in experimental diabetic rats.
Diabetic neuropathy is one of the most common complications in diabetes mellitus. Thus far, effective therapeutic agents for restoring the impaired motor and sensory nerve functions in diabetic neuropathy are still lacking. The antioxidant and neuroprotective properties of tanshinone IIA make it a promising candidate for the treatment of diabetic neuropathy. ⋯ We found that tanshinone IIA was capable of restoring diabetes-induced deficit in nerve functions (MNCV and NBF), and impairment in thermal and mechanical nociceptive capability. In addition, tanshinone IIA significantly increased the serum total antioxidant capability, improved the activities of Na(+),K(+)ATPase, increased the levels of SOD and catalase, and reduced the MDA level in sciatic nerves in diabetic rats. All the findings indicate the beneficial effect of tanshinone IIA on impaired nerve functions and raise the possibility of developing tanshinone IIA as a therapeutic agent for diabetic neuropathy.
-
We have previously described a rat model for the contribution of neuroplastic changes in nociceptors to the transition from acute to chronic pain. In this model a prior injury activates protein kinase C epsilon (PKCepsilon), inducing a chronic state characterized by marked prolongation of the hyperalgesia induced by inflammatory cytokines, prototypically prostaglandin E(2) (PGE(2)), referred to as hyperalgesic priming. In this study we evaluated the population of nociceptors involved in priming, by lesioning isolectin B4-positive (IB4(+)) nociceptors with intrathecal administration of a selective neurotoxin, IB4-saporin. ⋯ Thus, while PKCepsilon is present in most dorsal root ganglion neurons, where it can contribute to acute mechanical hyperalgesia, priming is restricted to IB4(+)-nociceptors, including those that are TrkA(+). While PKCepsilon activation can induce acute hyperalgesia in the IB4(+) population, it fails to induce priming. We suggest that hyperalgesic priming occurs only in IB4(+) nociceptors, and that in the peripheral terminals of nociceptors separate intracellular pools of PKCepsilon mediate nociceptor sensitization and the induction of hyperalgesic priming.
-
Transient receptor potential vanilloid 1 (TRPV1) channels are important membrane sensors on peripheral nerve endings and on supportive non-neuronal synoviocytes in the knee joint. TRPV 1 ion channels respond with activation of calcium and sodium fluxes to pH, thermal, chemical, osmotic, mechanical and other stimuli abundant in inflamed joints. In the present study, the kaolin/carrageenan (k/c) induced knee joint arthritis model in rats, as well as primary and clonal human synoviocyte cultures were used to understand the reciprocal interactions between reactive nitroxidative species (ROS) and functional TRPV1 channels. ROS generation was monitored with ROS sensitive dyes using live cell imaging in vitro and in spinal tissue histology, as well as with measurement of ROS metabolites in culture media using HPLC. ⋯ The results demonstrate that contributions of ROS to pronociceptive responses and neurogenic inflammation are mediated both centrally and peripherally. Responses are mediated by TRPV1 locally in the knee joint by synoviocytes, as well as by ROS-induced sensitization in the spinal cord. These findings and those of others reported in the literature indicate reciprocal interactions between TRPV1 and ROS play critical roles in the pathological and nociceptive responses active during arthritic inflammation.
-
A psychophysical method of response-dependent stimulation presented ascending and descending series of thermal stimulus intensities that maintained an average rating (setpoint) of mild pain (20 on a scale of 0-100) or moderate pain (35). Subjects were presented with alternating series of thermal stimuli that increased until ratings reached or exceeded the setpoint, then decreased until ratings equaled or were less than the setpoint, then increased, etc. ⋯ Thus, the nervous system detects and discriminates between ascending and descending trends in stimulus intensity and alters the magnitude of pain sensations in the direction of the trend of increasing or decreasing stimulus intensity. Ascending (sensitizing) trend effects may increase the magnitude of pathological pain in the absence of treatment, and descending (desensitizing) trend effects likely would enhance the efficacy of procedures that reduce pain sensitivity.
-
Prostatic acid phosphatase (PAP) is expressed in nociceptive dorsal root ganglion (DRG) neurons, functions as an ectonucleotidase, and generates adenosine extracellularly. Here, we found that PAP inhibits noxious thermal sensitivity and sensitization that is associated with chronic pain through sustained activation of the adenosine A(1) receptor (A(1)R) and phospholipase C-mediated depletion of phosphatidylinositol 4,5-bisphosphate (PIP(2)). In mice, intrathecal injection of PAP reduced PIP(2) levels in DRGs, inhibited thermosensation through TRPV1, and enduringly reduced thermal hyperalgesia and mechanical allodynia caused by inflammation, nerve injury, and pronociceptive receptor activation. ⋯ Together, our data suggest that PIP(2) levels in DRGs directly influence thermosensation and the magnitude of nociceptive sensitization. Moreover, our data suggest there is an underlying "phosphoinositide tone" that can be manipulated by an adenosine-generating ectonucleotidase. This tone regulates how effectively acute nociceptive insults promote the transition to chronic pain.