Articles: hyperalgesia.
-
After peripheral nerve damage macrophages infiltrate the dorsal root ganglia (DRG) in which cell bodies of lesioned neurons are located. However, infiltration of macrophages into the DRGs was also reported in complete Freund's adjuvant (CFA)-induced inflammation raising the question whether CFA inflammation induces nerve cell damage or whether peripheral inflammation may also trigger macrophage infiltration into DRGs. Related questions are, first, which signals trigger macrophage infiltration into DRGs and, second, is macrophage infiltration correlated with pain-related behavior. ⋯ Tumor necrosis factor-alpha (TNF-alpha) neutralization with etanercept or infliximab treatment after induction of AIA significantly reduced both macrophage infiltration and VCAM-1 expression. It also decreased mechanical hyperalgesia at the inflamed joint although the joint inflammation itself was barely attenuated, and it reduced mechanical hyperalgesia at the non-inflamed contralateral knee joint. Thus, bilateral segment-specific infiltration of macrophages into DRGs is part of an unilateral inflammatory process in peripheral tissue and it may be involved in the generation of hyperalgesia in particular on the non-inflamed side.
-
Withdrawal of opioid drugs leads to a cluster of unpleasant symptoms in dependent subjects. These symptoms are stimulatory in nature and oppose the acute, inhibitory effects of opiates. The conventional theory that explains the opioid withdrawal syndrome assumes that chronic usage of opioid drugs activates compensatory mechanisms whose stimulatory effects are revealed upon elimination of the inhibitory opioid drug from the body. ⋯ The blockage of withdrawal hyperalgesia by naloxone suggested the involvement of opioid receptors in the phenomenon and indicated that withdrawal hyperalgesia is a direct effect of a residual, low concentration of morphine. Acute experiments that show morphine- and naloxone-induced hyperalgesia further verified our hypothesis. Our findings offer a novel, alternative approach to opiate detoxifications that may prevent withdrawal symptoms by a complete blockage of the opioid receptors using a high dose of the opioid antagonist.
-
Chronic alcohol consumption produces a painful peripheral neuropathy for which there is no reliable successful therapy, which is mainly due to lack of understanding of its pathobiology. Alcoholic neuropathy is characterized by spontaneous burning pain, hyperalgesia (an exaggerated pain in response to painful stimuli) and allodynia (a pain evoked by normally innocuous stimuli). Chronic alcohol intake is known to decrease the nociceptive threshold with increased oxidative-nitrosative stress and release of proinflammatory cytokines coupled with activation of protein kinase C. ⋯ TNF-alpha and IL-1beta levels were also significantly increased in both serum and sciatic nerve of ethanol-treated rats. Treatment with alpha-tocopherol and tocotrienol for 10 weeks significantly improved all the above-stated functional and biochemical deficits in a dose-dependent manner with more potent effects observed with tocotrienol. The study demonstrates the effectiveness of tocotrienol in attenuation of alcoholic neuropathy.
-
In human conditions, chronic pain is associated with widespread anatomical changes in the brain. Nevertheless, little is known about the time course of these changes or the relationship of anatomical changes to perception and behaviour. In the present study, we use a rat model of neuropathic pain (spared nerve injury, SNI) and 7 T MRI to determine the longitudinal supraspinal changes associated with pain-like and anxiety-like behaviours. ⋯ There was also decreased volume in retrosplenial and entorhinal cortices. We also explored areas that correlated with mechanical hyperalgesia and found that increased hyperalgesia was associated with decreased volumes in bilateral S1 hindlimb area, anterior cingulate cortex (ACC, areas 32 and 24), and insula. Overall, our results suggest that long-term neuropathic pain has widespread effects on brain anatomy related to the duration and magnitude of the pain.
-
ATP-sensitive potassium (K(ATP)) channels may be linked to mechanisms of pain after nerve injury, but remain under-investigated in primary afferents so far. We therefore characterized these channels in dorsal root ganglion (DRG) neurons, and tested whether they contribute to hyperalgesia after spinal nerve ligation (SNL). We compared K(ATP) channel properties between DRG somata classified by diameter into small or large, and by injury status into neurons from rats that either did or did not become hyperalgesic after SNL, or neurons from control animals. ⋯ These findings indicate that functional K(ATP) channels are present in normal DRG neurons, wherein they regulate RMP. Alterations of these channels may be involved in the pathogenesis of neuropathic pain following peripheral nerve injury. Their biophysical and pharmacological properties are preserved even after axotomy, suggesting that K(ATP) channels in primary afferents remain available for therapeutic targeting against established neuropathic pain.