Articles: hyperalgesia.
-
In recent years a role for EphB receptor tyrosine kinases and their ephrinB ligands in activity-dependent synaptic plasticity in the CNS has been identified. The aim of the present study was to test the hypothesis that EphB receptor activation in the adult rat spinal cord is involved in synaptic plasticity and processing of nociceptive inputs, through modulation of the function of the glutamate ionotropic receptor NMDA (N-methyl-D-aspartate). In particular, EphB receptor activation would induce phosphorylation of the NR2B subunit of the NMDA receptor by a Src family non-receptor tyrosine kinase. ⋯ Furthermore animals pre-treated with PP2 did not develop behavioral thermal hyperalgesia following EphrinB2-Fc administration, suggesting that this pathway is functionally significant. Indeed, EphB1-Fc administration, which competes with the endogenous receptor for ephrinB2 binding and prevents behavioral allodynia and hyperalgesia in the carrageenan model of inflammation, also inhibited NR2B phosphorylation in this model. Taken together these findings support the hypothesis that EphB-ephrinB interactions play an important role in NMDA-dependent, activity-dependent synaptic plasticity in the adult spinal cord, inducing the phosphorylation of the NR2B subunit of the receptor via Src family kinases, thus contributing to chronic pain states.
-
Although there is evidence that reduced inhibition in the spinal dorsal horn contributes to neuropathic pain, the mechanisms that underlie this are poorly understood. We have previously demonstrated that there is no loss of neurons from laminae I-III in the spared nerve injury (SNI) model [Polgár E, Hughes DI, Arham AZ, Todd AJ (2005) Loss of neurons from laminas I-III of the spinal dorsal horn is not required for development of tactile allodynia in the SNI model of neuropathic pain. J Neurosci 25:6658-6666]. ⋯ We found no difference in the intensity of immunolabeling for any of these markers on the two sides of the superficial dorsal horn. These results suggest that there is no significant loss of GABAergic boutons from the denervated area after SNI (which is consistent with the finding that neuronal death does not occur in this model) and that there is no depletion of GABA or GABA(A) receptors at GABAergic synapses within this region. An alternative explanation for disinhibition after nerve injury is that it results from reduced excitatory drive to GABAergic dorsal horn neurons following loss of primary afferent input to these cells.
-
Systemic (s.c.) injection in naïve mice of cyclic AMP-phosphodiesterase (cAMP-PDE) inhibitors, e.g. 3-isobutyl-1-methylxanthine [(IBMX) or caffeine, 10 mg/kg] or the more specific cAMP-PDE inhibitor, rolipram (1 mug/kg), rapidly evokes thermal hyperalgesia (lasting >5 h). These effects appear to be mediated by enhanced excitatory opioid receptor signaling, as occurs during withdrawal in opioid-dependent mice. Cotreatment of these mice with ultra-low-dose naltrexone (NTX, 0.1 ng/kg-1 pg/kg, s.c.) results in prominent opioid analgesia (lasting >4 h) even when the dose of rolipram is reduced to 1 pg/kg. ⋯ Ultra-low-dose NTX, nor-BNI or beta-FNA selectively antagonizes high-efficacy excitatory (hyperalgesic) Gs-coupled opioid receptor-mediated signaling in naïve mice and results in rapid conversion to inhibitory (analgesic) Gi/Go-coupled opioid receptor-mediated signaling which normally requires activation by much higher doses of opioid agonists. Cotreatment with a low subanalgesic dose of kelatorphan, an inhibitor of multiple endogenous opioid peptide-degrading enzymes, stabilizes endogenous opioid agonists released by cAMP-PDE inhibitors, resulting in conversion of the hyperalgesia to analgesia without requiring selective blockade of excitatory opioid receptor signaling. The present study provides a novel pharmacologic paradigm that may facilitate development of valuable non-narcotic clinical analgesics utilizing cotreatment with ultra-low-dose rolipram plus ultra-low-dose NTX or related agents.
-
Comparative Study
Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice.
Recent studies indicate that reactive oxygen species (ROS) are critically involved in persistent pain primarily through spinal mechanisms, thus suggesting ROS involvement in central sensitization. To investigate ROS involvement in central sensitization, the effects of ROS scavengers and donors on pain behaviors were examined in mice. Capsaicin- induced hyperalgesia was used as a pain model since it has 2 distinctive pain components, primary and secondary hyperalgesia representing peripheral and central sensitization, respectively. ⋯ On the other hand, intrathecal injection of tert-butylhydroperoxide (t-BOOH, 5 microl), a ROS donor, produced a transient hyperalgesia in a dose-dependent manner. The number of MitoSox positive dorsal horn neurons was increased significantly after capsaicin treatment. This study suggests that ROS mediates the development and maintenance of capsaicin-induced hyperalgesia in mice, mainly through central sensitization and that the elevation of spinal ROS is most likely due to increased production of mitochondrial superoxides in the dorsal horn neurons.
-
Comparative Study
A-kinase anchoring protein mediates TRPV1 thermal hyperalgesia through PKA phosphorylation of TRPV1.
Certain phosphorylation events are tightly controlled by scaffolding proteins such as A-kinase anchoring protein (AKAP). On nociceptive terminals, phosphorylation of transient receptor potential channel type 1 (TRPV1) results in the sensitization to many different stimuli, contributing to the development of hyperalgesia. In this study, we investigated the functional involvement of AKAP150 in mediating sensitization of TRPV1, and found that AKAP150 is co-expressed in trigeminal ganglia (TG) neurons from rat and associates with TRPV1. ⋯ In CHO cells, the PKA RII binding site on AKAP was necessary for PKA enhancement of TRPV1-mediated Ca2+-accumulation. In addition, AKAP150 knock-down in cultured TG neurons attenuated PKA sensitization of TRPV1 activity and in vivo administration of an AKAP antagonist significantly reduced prostaglandin E2 sensitization to thermal stimuli. These data suggest that AKAP150 functionally regulates PKA-mediated phosphorylation/sensitization of the TRPV1 receptor.