Articles: hyperalgesia.
-
Nitric oxide (NO) acts as a neurotransmitter or neuromodulator involving in the modulation of thermal and/or inflammatory hyperalgesia. The neuronal nitric oxide synthase (nNOS) is a key enzyme for NO production in normal neuronal tissues, but its functional role in chronic pain remains unclear. The present study combined a genetic strategy with a pharmacologic approach to address the role of nNOS in the central mechanism of complete Freund's adjuvant (CFA)-induced chronic inflammatory pain. ⋯ Finally, spinal cord nNOS (but not endothelial NOS or inducible NOS) expression was up-regulated at 24h after CFA injection, occurring mainly in the ipsilateral superficial dorsal horn. Together, these data indicate that spinal cord nNOS may be essential for the maintenance of mechanical pain hypersensitivity and that it may also be sufficient for the development of mechanical pain hypersensitivity and for the development and maintenance of thermal pain hypersensitivity after chronic inflammation. Our findings suggest that spinal cord nNOS might play a critical role in central mechanisms of the development and/or maintenance of chronic inflammatory pain.
-
Chronic muscle pain is common and often difficult to treat. In this study, we further characterize a model of chronic muscle pain induced by repeated intramuscular injection of acidic saline. Two injections of acid into muscle separated by 5 days result in secondary mechanical hyperalgesia that lasts for up to 4 weeks. ⋯ The second intramuscular injection evoked a calcium-dependent increase in both spinal glutamate and aspartate concentrations. Glutamate concentrations within the dorsal horn were also increased 1 week after the second acid injection. Our data suggest increased release of spinal EAAs in the dorsal horn contributes to the development and maintenance of hyperalgesia.
-
Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia). To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. ⋯ The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.
-
Proc. Natl. Acad. Sci. U.S.A. · Dec 2005
Randomized Controlled Trial Comparative StudyPharmacological modulation of pain-related brain activity during normal and central sensitization states in humans.
Abnormal processing of somatosensory inputs in the central nervous system (central sensitization) is the mechanism accounting for the enhanced pain sensitivity in the skin surrounding tissue injury (secondary hyperalgesia). Secondary hyperalgesia shares clinical characteristics with neurogenic hyperalgesia in patients with neuropathic pain. Abnormal brain responses to somatosensory stimuli have been found in patients with hyperalgesia as well as in normal subjects during experimental central sensitization. ⋯ We found that (i) gabapentin reduced the activations in the bilateral operculoinsular cortex, independently of the presence of central sensitization; (ii) gabapentin reduced the activation in the brainstem, only during central sensitization; (iii) gabapentin suppressed stimulus-induced deactivations, only during central sensitization; this effect was more robust than the effect on brain activation. The observed drug-induced effects were not due to changes in the baseline fMRI signal. These findings indicate that gabapentin has a measurable antinociceptive effect and a stronger antihyperalgesic effect most evident in the brain areas undergoing deactivation, thus supporting the concept that gabapentin is more effective in modulating nociceptive transmission when central sensitization is present.
-
Anesthesia and analgesia · Dec 2005
A single dose of intrathecal morphine in rats induces long-lasting hyperalgesia: the protective effect of prior administration of ketamine.
An active pronociceptive process involving N-methyl-D-aspartate (NMDA) receptor activation is initiated by opioid administration, leading to opioid-induced pain sensitivity. Experimental observations in rats have reported reduction of baseline nociceptive threshold after prolonged spinal opioid administration. In this study we sought to determine whether a single dose of intrathecal morphine can induce hyperalgesia in uninjured rats and to assess the effects of pretreatment with the NMDA-antagonist ketamine on nociceptive thresholds. ⋯ A single intrathecal injection of morphine led to a biphasic effect on nociception; early analgesia associated with an increase in the nociceptive threshold lasting 3-5 h was followed by delayed hyperalgesia associated with a decrease in the nociceptive threshold lasting 1-2 days. Subcutaneous ketamine did not significantly modify the early analgesic component but almost completely prevented the delayed decrease in nociceptive threshold after intrathecal administration of morphine. A single intrathecal injection of morphine in rats produces a delayed and sustained hyperalgesia linked to the development of opioid-induced pain sensitivity.