Articles: hyperalgesia.
-
Comparative Study
Thalamic neuronal activity in rats with mechanical allodynia following contusive spinal cord injury.
Pain and allodynia following spinal cord injury are poorly understood and difficult to treat. Since there is evidence that supraspinal mechanisms are important in such pain, we have studied the role of the thalamus in an experimental model of spinal injury. Extracellular recordings were obtained from neurones of the thalamic nucleus ventralis postero-lateralis (VPL) in normal rats and those which had sustained a contusive spinal cord injury to the thoraco-lumbar junction 7 days previously. ⋯ We have previously reported that a proportion of spinal neurones in allodynic spinally injured rats show increased evoked responses and afterdischarges following brushing the skin and hence the enhanced thalamic responses may reflect a greater spinal input. In view of the increasing evidence that thalamo-cortical rhythmical firing is linked to sensorimotor and cognitive brain functions, we propose that pain following brushing the skin results from an exaggerated spinal input being processed by a dysrhythmic thalamus. Thus both spinal and thalamic mechanisms may be important in the genesis of pain and allodynia following spinal cord injury.
-
In this paper we compare two innovative models of movement-related pain: tumor-induced nociception following implantation of fibrosarcoma cells into bone and muscle inflammation-induced nociception following injection of the irritant carrageenan into muscle. Importantly, using the grip force test, an assay of movement-related hyperalgesia, both non-malignant and malignant pain are examined in parallel. Movement-related hyperalgesia, known clinically as a specific type of 'breakthrough pain', is a common feature of bone cancer and is thought to be a predictor of poor response to conventional analgesic pharmacotherapy (Bruera et al., 1995, J. ⋯ Tumor-implanted mice with a level of hyperalgesia comparable to that induced by carrageenan required almost three times more morphine (ED(50) 18.5mg/kg) for equivalent attenuation of forelimb hyperalgesia. These animal models of movement-related hyperalgesia may aid in discerning the peripheral and central mechanisms underlying pain that accompanies bone metastases and distinguishing it from the pain associated with muscular inflammation. Importantly, they may also aid in predicting differences in analgesic efficacy in different types of musculoskeletal pain.
-
Despite significant advances in the recognition of etiological factors and pathological mechanisms, the pathophysiology of functional gastrointestinal disorders (FGD) is still not fully understood. Visceral hypersensitivity has been recognized as a characteristic of patients with FGD, especially in patients with irritable bowel syndrome (IBS). Visceral afferent input is modulated by a variety of mechanisms, operating between the gastrointestinal tract and the brain. ⋯ Although imaging techniques indicate that there are also differences in cortical activation. Furthermore, selective serotonin reuptake inhibitors may benefit FGD. Recent pharmacological studies suggest that 5-HT3 antagonist such as alosetron and cilansetron, and 5-HT4 agonist such as legaserod and prucalopride may also have a potential use in FGD.
-
Comparative Study
Intrathecal substance p-saporin attenuates operant escape from nociceptive thermal stimuli.
Destruction of neurons in the superficial dorsal horn that express substance P receptor (NK-1R) has been reported to block development of behavioral hypersensitivity following peripheral sensitization of nociceptors. Baseline sensitivity was not altered in these rat models that assessed innate reflex responses (i.e. hind-paw withdrawal to thermal or mechanical stimulation). In the present study, we evaluated effects of intrathecal substance P-saporin (SP-sap), a toxin selective for cells expressing NK-1R, on operant escape responses of rats to thermal stimulation. ⋯ Lick/guard responses were enhanced by mustard oil for both SP-sap and control animals. Administration of morphine (1.0 mg/kg, s.c.) before testing decreased escape responding at 47 degrees C for both controls and SP-sap rats. Thus, partial loss of NK-1R-expressing neurons in the superficial dorsal horn attenuated thermal nociceptive sensitivity and prevented secondary hyperalgesia when studied with an operant algesia assay, in contrast to innate reflexes which were less sensitive to modification by intrathecal SP-sap.
-
Review
Glial proinflammatory cytokines mediate exaggerated pain states: implications for clinical pain.
When you hurt yourself, you become consciously aware of the pain because a chain of neurons carries the pain message from the injury to the spinal cord, and then from the spinal cord up to consciousness in the brain. However, it has been known for more than two decades that neural circuits within the spinal cord can cause your conscious experience of pain to be amplified-that is, the pain you perceive is out of proportion to the injury that caused it. Until now, all research aimed at understanding how pain amplification occurs in the spinal cord and all drug therapies aimed at curing exaggerated pain have focused exclusively on neurons. ⋯ Indeed, when glia become activated, they begin releasing a variety of chemical substances that causes the pain message to become amplified, thus causing pain to hurt more. This review discusses evidence that glia cause pain to become amplified and describes how the glia cause this to happen. The take-home message is that drugs that target glia and the chemical substances that these glia release are predicted to be powerful remedies for pain problems in people.