Articles: hyperalgesia.
-
The effects of BK agonists and antagonists, and other hyperalgesic/antihyperalgesic drugs were measured (3 h after injection of hyperalgesic drugs) in a model of mechanical hyperalgesia (the end-point of which was indicated by a brief apnoea, the retraction of the head and forepaws, and muscular tremor). DALBK inhibited responses to carrageenin, bradykinin, DABK, and kallidin. Responses to kallidin and DABK were inhibited by indomethacin or atenolol and abolished by the combination of indomethacin + atenolol. ⋯ The hyperalgesic response to LPS (1 microg) was inhibited by DALBK or HOE 140 and abolished by DALBK + HOE 140. The hyperalgesic response to LPS (5 microg) was not antagonized by DALBK + HOE 140. These data suggest: (a) a predominant role for B2 receptors in mediating hyperalgesic responses to BK and to drugs that stimulate BK release, and (b) activation of the hyperalgesic cytokine cascade independently of both B1 and B2 receptors if the hyperalgesic stimulus is of sufficient magnitude.
-
Opioids and receptor antagonists of excitatory amino acids attenuate mechanical allodynia and thermal hyperalgesia in animal models of neuropathic pain. Recently, a kainate receptor antagonist, 2S,4R-4-methylglutamate, has been developed but has not been tested for antinociceptive effects in animal models of neuropathic pain. We evaluated whether 2S,4R-4-methylglutamate attenuated responses to mechanical and thermal stimuli in uninjured (control) rats and increased responsiveness in rats with chronic constriction injury. ⋯ At four to eight days following chronic constriction injury, animals that displayed increased responsiveness to mechanical and thermal stimuli were injected intraperitoneally with either dizocilpine maleate (0.1 mg/kg), morphine (4 mg/kg), vehicle as controls, or 2S,4R-4-methylglutamate (25, 50, 75 or 100 mg/kg). 2S,4R-4-Methylglutamate (25, 50, 75 and 100 mg/kg) significantly attenuated the frequency of responses to mechanical stimuli (Wilcoxon, P < 0.05) and the latency of responses to thermal stimuli (analysis of variance and Duncan's, P < 0.05). Dizocilpine maleate and morphine, as expected, also reduced these responses. These results suggest that, in addition to opioid and N-methyl-D-aspartate receptors, kainate receptors may play a role in the maintenance of mechanical allodynia and thermal hyperalgesia associated with peripheral nerve injury.
-
Preclinical and clinical evidence indicates that locally administered opioid agonists produce an antihyperalgesic effect through peripheral opioid receptors in inflamed tissue. Loperamide, a mu opioid agonist, does not cross the blood-brain barrier and therefore lacks central effects after systemic administration. The authors defined the effects of topical loperamide on a thermal injury-induced hyperalgesia. ⋯ Loperamide, a peripherally acting mu opioid agonist, applied topically at the site of inflammation possesses a significant antihyperalgesic action without any systemic side effects.
-
Central sensitization refers to enhanced excitability of dorsal horn neurons and is characterized by increased spontaneous activity, enlarged receptive field (RF) areas, and an increase in responses evoked by large and small caliber primary afferent fibers. Sensitization of dorsal horn neurons often occurs following tissue injury and inflammation and is believed to contribute to hyperalgesia. Windup refers to the progressive increase in the magnitude of C-fiber evoked responses of dorsal horn neurons produced by repetitive activation of C-fibers. ⋯ Enhanced responsivity to C-fiber input following windup produced by stimulation inside the RF at a frequency of 0.5 Hz could be maintained for approximately 100 s by stimuli delivered at 0.1 Hz, a frequency that itself cannot produce windup. It is concluded that neuronal events leading to windup also produce some of the classical characteristics of central sensitization including expansion of RFs and enhanced responses to C- but not A-fiber stimulation. Thus, windup may be a useful tool to study mechanisms underlying certain characteristics of central sensitization related to C-fiber activity.
-
The hypothesis that prostaglandins contribute to hyperalgesia resulting from nerve injury was tested in rats in which the sciatic nerve was partially transected on one side. Subcutaneous injection of indomethacin (a classic inhibitor of cyclo-oxygenase) into the affected hindpaw relieved mechanical hyperalgesia for up to 10 days after injection. Subcutaneous injection of meloxicam or SC-58125 (selective inhibitors of cyclo-oxygenase-2) into the affected hindpaw also relieved mechanical hyperalgesia, but with a shorter time-course. ⋯ Comparable injections into the contralateral paw or abdomen had no effect on mechanical or thermal hyperalgesia, suggesting that the effects we observed were local rather than systemic. We conclude that prostaglandins, probably prostaglandin E1 or E2, contribute to the peripheral mechanisms underlying hyperalgesia following nerve injury. These data provide further evidence that inflammatory mediators contribute to neuropathic pain, and may warrant further study of peripherally administered non-steroidal anti-inflammatory drugs as a possible treatment for such pain in patients.