Articles: sars-cov-2.
-
Rationale: The clinical data and corresponding dynamic CT findings were investigated in detail to describe the clinical and imaging profiles of COVID-19 pneumonia disease progression. Methods: Forty HCWs with COVID-19 were included in this study and 30 enrolled for imaging assessment. Disease was divided into four stages based on time from onset: stage 1 (1-6 days), stage 2 (7-13 days), stage 3 (14-22 days), and stage 4 (> 22 days). ⋯ Consolidation score peaked in stage 2 whereas total lesions score peaked in stage 3. Conclusions: COVID-19 pneumonia in HCWs has a potential predilection for younger female workers. Stage 2 of COVID-19 pneumonia may be the key period for controlling progression of the disease, and consolidation scores may be an objective reflection of the severity of lung involvement.
-
SARS-CoV-2 virus causes a pneumonia that was identified through fever, dyspnea, and acute respiratory symptoms and named COVID-19. This disease exacerbates in a number of patients and causes pulmonary edema, multi-organ failure, and acute respiratory distress syndrome (ARDS). ⋯ Among the introduced treatment methods for management of ARDS patients, prone position can be used as an adjuvant therapy for improving ventilation in these patients. Here we reviewed the literature regarding the role of prone position in management of COVID-19 patients.
-
Frontiers in immunology · Jan 2020
Antibody Dependent Enhancement Due to Original Antigenic Sin and the Development of SARS.
Human coronavirus (HCoV) is one of the most common causes of respiratory tract infections throughout the world. Two phenomena observed so far in the development of the SARS-CoV-2 pandemic deserve further attention. First, the relative absence of clinical signs of infections in children, second, the early appearance of IgG in certain patients. ⋯ On the contrary, due to cross-reaction to related coronavirus strains from earlier infections, in certain patients IgG might enhance clinical progression due to ADE. The patient's viral history of coronavirus infection might be crucial to the development of the current infection with SARS-CoV-2. Furthermore, it poses a note of caution when treating COVID-19 patients with convalescent sera.
-
Monoclonal antibody (mAb) therapy has been previously exploited for viral infections, such as respiratory syncytial virus pneumonia and Ebolavirus disease. In the ongoing COVID-19 pandemic, early signals of efficacy from convalescent plasma therapy have encouraged research and development of anti-SARS-CoV-2 mAbs. ⋯ We describe the structure, mechanism of action, and ongoing trials for VIR-7831, LY-CoV555, LY-CoV016, BGB-DXP593, REGN-COV2, and CT-P59. We speculate also on the next generation of these mAbs.
-
Front Cell Infect Microbiol · Jan 2020
Is the "Common Cold" Our Greatest Ally in the Battle Against SARS-CoV-2?
The discovery of T-cell responses to SARS-CoV-2 in non-infected individuals indicates cross-reactive immune memory from prior exposure to human coronaviruses (HCoV) that cause the common cold. This raises the possibility that "immunity" could exist within populations at rates that may be higher than serology studies estimate. ⋯ This would necessitate the merging of several public databases including patient and contact tracing, which could be created by relevant public health organizations. Including data from both symptomatic and asymptomatic patients in SARS-CoV-2 databases and surveillance systems could provide the necessary information to allow for more informed decisions.