Articles: respiratory-distress-syndrome.
-
Despite its significant limitations, the PaO2 /FIO2 remains the standard tool to classify disease severity in ARDS. Treatment decisions and research enrollment have depended on this parameter for over 50 years. In addition, several variables have been studied over the past few decades, incorporating other physiologic considerations such as ventilation efficiency, lung mechanics, and right-ventricular performance. This review describes the strengths and limitations of all relevant parameters, with the goal of helping us better understand disease severity and possible future treatment targets.
-
Observational Study
The Use of the Oxygenation Stretch Index to Predict Outcomes in Mechanically Ventilated Patients With COVID-19 ARDS.
In ARDS caused by COVID-19 pneumonia, appropriate adjustment of physiologic parameters based on lung stretch or oxygenation may optimize the ventilatory strategy. This study aims to describe the prognostic performance on 60-d mortality of single and composite respiratory variables in subjects with COVID-19 ARDS who are on mechanical ventilation with a lung-protective strategy, including the oxygenation stretch index combining oxygenation and driving pressure (ΔP). ⋯ The oxygenation stretch index, which combines [Formula: see text]/[Formula: see text] and ΔP, is associated with mortality and may be useful to predict clinical outcomes in COVID-19 ARDS.
-
Diaphragm inactivity during invasive mechanical ventilation leads to diaphragm atrophy and weakness, hemodynamic instability, and ventilatory heterogeneity. Absent respiratory drive and effort can, therefore, worsen injury to both lung and diaphragm and is a major cause of failure to wean. Phrenic nerve stimulation (PNS) can maintain controlled levels of diaphragm activity independent of intrinsic drive and as such may offer a promising approach to achieving lung and diaphragm protective ventilatory targets. Whereas PNS has an established role in the management of chronic respiratory failure, there is emerging interest in how its multisystem putative benefits may be temporarily harnessed in the management of invasively ventilated patients with acute respiratory failure.
-
In the acute distress respiratory syndrome (ARDS), specific lung regions can be exposed to excessive strain due to heterogeneous disease, gravity-dependent lung collapse and injurious mechanical ventilation. Computed tomography (CT) is the gold standard for regional strain assessment. An alternative tool could be the electrical impedance tomography (EIT). We aimed to determine whether EIT-based methods can predict the dynamic relative regional strain (DRRS) between two levels of end-expiratory pressure (PEEP) in gravity-non-dependent and dependent lung regions. ⋯ Changes in DRRS during a PEEP trial in ARDS patients could be monitored using EIT, based on changes in ΔZmL/EELIml and ∆ZAU. The relative change ∆ZAU offers the advantage of not requiring CT data for calibration.
-
Multicenter Study
The impact of the new acute respiratory distress syndrome (ARDS) criteria on Berlin criteria ARDS patients: a multicenter cohort study.
The European Society of Intensive Care Medicine (ESICM) recently recommended changes to the criteria of acute respiratory distress syndrome (ARDS), patients with high-flow oxygen were included, however, the effect of these changes remains unclear. Our objectives were to evaluate the performance of these new criteria and to compare the outcomes of patients meeting the new ARDS criteria with those meeting the Berlin ARDS criteria. ⋯ The new criteria of ARDS reduced the severity of illness, length of stay in the ICU, length of hospital stays, and overall mortality. SOFA and APACHE II scores remain important in assessing the prognosis of patients with new criteria ARDS.