Articles: brain-injuries.
-
Acta Neurochir. Suppl. · Jan 1998
Interhemispheric pressure gradients in severe head trauma in humans.
Interhemispheric pressure gradients may occur following severe head trauma in patients even in the absence of intracranial space occupying lesions. A higher ICP of the contralateral hemisphere may escape routine unilateral ICP monitoring. ⋯ According to our data with a limited number of patients, interhemispheric pressure gradients seem to occur in the initial posttraumatic phase in some patients, and they seem to resolve following adequate ICP treatment after several hours. Therefore, simultaneous bilateral ICP measurement may be warranted in the initial posttraumatic phase.
-
It is usually defficult in clinical practice to establish factors affecting final outcome in patients suffering severe diffuse brain injury (SDBI), due to the absence of specific semiology. ⋯ Clinical evaluation, early CT findings, ICP values and their response to medical treatment and clinical complications were found to be related (p < 0.05) to final outcome (GOS).
-
Journal of neurotrauma · Dec 1997
Effect of tetrahydroaminoacridine, a cholinesterase inhibitor, on cognitive performance following experimental brain injury.
An emerging literature exists in support of deficits in cholinergic neurotransmission days to weeks following experimental traumatic brain injury (TBI). In addition, novel cholinomimetic therapeutics have been demonstrated to improve cognitive outcome following TBI in rats. We examined the effects of repeated postinjury administration of a cholinesterase inhibitor, tetrahydroaminoacridine (THA), on cognitive performance following experimental TBI. ⋯ Analysis of maze latencies over days indicated that chronic administration of THA produced a dose-related impairment in MWM performance in both the injured and sham groups, with the 9.0 mg/kg dose producing the largest deficit. The 1.0 and 3.0 mg/kg doses of THA impaired MWM performance without affecting swimming speeds. Thus, the results of this investigation do not support the use of THA as a cholinomimetic therapeutic for the treatment of cognitive deficits following TBI.
-
Journal of neurotrauma · Dec 1997
Effects of nalmefene, CG3703, tirilazad, or dopamine on cerebral blood flow, oxygen delivery, and electroencephalographic activity after traumatic brain injury and hemorrhage.
Hemorrhage after traumatic brain injury (TBI) in cats produces significant decreases in cerebral oxygen delivery (DcereO2) and electroencephalographic (EEG) activity. To determine whether effective treatments for the separate insults of TBI and hemorrhagic shock would also prove effective after the clinically relevant combination of the two, we measured the effects of a kappa-opiate antagonist (nalmefene), an inhibitor of lipid peroxidation (tirilazad), a thyrotropin-releasing hormone analog (CG3703), a clinically useful pressor agent (dopamine) or a saline placebo on cerebral blood flow (CBF), and EEG activity after TBI and mild hemorrhagic hypotension. Cats (n = 40, 8 per group) were anesthetized with 1.6% isoflurane in N2O:O2 (70:30) and prepared for fluid-percussion TBI and microsphere measurements of CBF. ⋯ DcereO2 was significantly less than baseline in the saline-, dopamine-, and tirilazad-treated groups at R60 and in the dopamine-, tirilazad-, and CG3703-treated groups at R120. EEG activity remained unchanged in the nalmefene-treated group but deteriorated significantly at R60 or R120 compared to baseline in the other groups. Nalmefene and CG3703 preserved the hyperemic response to hemodilution (otherwise antagonized by TBI), and nalmefene prevented the deterioration in DcereO2 and EEG activity that occurs after TBI and hemorrhage.