-
Chinese medical journal · Jan 2020
Multicenter StudyStatus of glycosylated hemoglobin and prediction of glycemic control among patients with insulin-treated type 2 diabetes in North China: a multicenter observational study.
- Jiao Wang, Meng-Yang Wang, Hui Wang, Hong-Wei Liu, Rui Lu, Tong-Qing Duan, Chang-Ping Li, Zhuang Cui, Yuan-Yuan Liu, Yuan-Jun Lyu, and Jun Ma.
- Department of Health Statistics, College of Public Health, Tianjin Medical University, Tianjin 300070, China.
- Chin. Med. J. 2020 Jan 5; 133 (1): 172417-24.
BackgroundBlood glucose control is closely related to type 2 diabetes mellitus (T2DM) prognosis. This multicenter study aimed to investigate blood glucose control among patients with insulin-treated T2DM in North China and explore the application value of combining an elastic network (EN) with a machine-learning algorithm to predict glycemic control.MethodsBasic information, biochemical indices, and diabetes-related data were collected via questionnaire from 2787 consecutive participants recruited from 27 centers in six cities between January 2016 and December 2017. An EN regression was used to address variable collinearity. Then, three common machine learning algorithms (random forest [RF], support vector machine [SVM], and back propagation artificial neural network [BP-ANN]) were used to simulate and predict blood glucose status. Additionally, a stepwise logistic regression was performed to compare the machine learning models.ResultsThe well-controlled blood glucose rate was 45.82% in North China. The multivariable analysis found that hypertension history, atherosclerotic cardiovascular disease history, exercise, and total cholesterol were protective factors in glycosylated hemoglobin (HbA1c) control, while central adiposity, family history, T2DM duration, complications, insulin dose, blood pressure, and hypertension were risk factors for elevated HbA1c. Before the dimensional reduction in the EN, the areas under the curve of RF, SVM, and BP were 0.73, 0.61, and 0.70, respectively, while these figures increased to 0.75, 0.72, and 0.72, respectively, after dimensional reduction. Moreover, the EN and machine learning models had higher sensitivity and accuracy than the logistic regression models (the sensitivity and accuracy of logistic were 0.52 and 0.56; RF: 0.79, 0.70; SVM: 0.84, 0.73; BP-ANN: 0.78, 0.73, respectively).ConclusionsMore than half of T2DM patients in North China had poor glycemic control and were at a higher risk of developing diabetic complications. The EN and machine learning algorithms are alternative choices, in addition to the traditional logistic model, for building predictive models of blood glucose control in patients with T2DM.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.