• AJR Am J Roentgenol · May 2013

    Comparative Study

    Model-based iterative reconstruction versus adaptive statistical iterative reconstruction and filtered back projection in liver 64-MDCT: focal lesion detection, lesion conspicuity, and image noise.

    • William P Shuman, Doug E Green, Janet M Busey, Orpheus Kolokythas, Lee M Mitsumori, Kent M Koprowicz, Jean-Baptiste Thibault, Jiang Hsieh, Adam M Alessio, Eunice Choi, and Paul E Kinahan.
    • Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195, USA. wshuman@u.washington.edu
    • AJR Am J Roentgenol. 2013 May 1; 200 (5): 1071-6.

    ObjectiveThe purpose of this study is to compare three CT image reconstruction algorithms for liver lesion detection and appearance, subjective lesion conspicuity, and measured noise.Materials And MethodsThirty-six patients with known liver lesions were scanned with a routine clinical three-phase CT protocol using a weight-based noise index of 30 or 36. Image data from each phase were reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and model-based iterative reconstruction (MBIR). Randomized images were presented to two independent blinded reviewers to detect and categorize the appearance of lesions and to score lesion conspicuity. Lesion size, lesion density (in Hounsfield units), adjacent liver density (in Hounsfield units), and image noise were measured. Two different unblinded truth readers established the number, appearance, and location of lesions.ResultsFifty-one focal lesions were detected by truth readers. For blinded reviewers compared with truth readers, there was no difference for lesion detection among the reconstruction algorithms. Lesion appearance was statistically the same among the three reconstructions. Although one reviewer scored lesions as being more conspicuous with MBIR, the other scored them the same. There was significantly less background noise in air with MBIR (mean [± SD], 2.1 ± 1.4 HU) than with ASIR (8.9 ± 1.9 HU; p < 0.001) or FBP (10.6 ± 2.6 HU; p < 0.001). Mean lesion contrast-to-noise ratio was statistically significantly higher for MBIR (34.4 ± 29.1) than for ASIR (6.5 ± 4.9; p < 0.001) or FBP (6.3 ± 6.0; p < 0.001).ConclusionIn routine-dose clinical CT of the liver, MBIR resulted in comparable lesion detection, lesion characterization, and subjective lesion conspicuity, but significantly lower background noise and higher contrast-to-noise ratio compared with ASIR or FBP. This finding suggests that further investigation of the use of MBIR to enable dose reduction in liver CT is warranted.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…