• Arch Med Sci · Sep 2019

    Low expression of brown and beige fat genes in subcutaneous tissues in obese patients.

    • Aishah Al-Amrani, Mouaadh AbdelKarim, Mohammad AlZabin, and Mohammad Alzoghaibi.
    • PhD student, Department of Physiology, Faculty of Medicine King Saud University, Riyadh, Saudi Arabia.
    • Arch Med Sci. 2019 Sep 1; 15 (5): 1113-1122.

    IntroductionThe molecular mechanisms behind obesity pathogenesis remain largely undefined. Impairment in the browning process of subcutaneous tissues proposed to contribute to obesity pathogenesis. In the current study, we aimed to assess whether the expression of brown fat genes in subcutaneous tissues in obese patients is altered as compared to non-obese patients.Material And MethodsParticipants were recruited from patients undergoing general surgeries. At the same site of surgery, biopsies were taken from the abdominal subcutaneous tissues from each participant, along with a venous blood sample. The expression of BAT genes was measured using a real-time PCR method. Serum FGF21 was measured using an ELISA kit, and the serum blood lipid profile was measured using the Dimension VistaTM 1500 System.ResultsA total of 58 surgical patients was involved. A low expression of BAT genes was observed in the groups with higher body mass index (BMI) (< 30 kg/m2) as compared to the groups with lower BMI (> 30 kg/m2). The expression of CIDEA and CITED1 was significantly higher in the patients with normal weight as compared to obese (p = 0.01 and p = 0.02, respectively). A significant negative correlation was found between the expression of BAT genes and BMI in patients with BMI < 35 kg/m2. However, the strongest negative correlation was observed in the expression of CIDEA (r = -0.5, p = 0.004), followed by TBX1 (r = -0.4, p = 0.01), CITED1, and ZIC1 (r = -0.4, p = 0.03). Whereas the correlation of UCP1 with BMI remained insignificant (r = -0.29, p = 0.08). When including patients with BMI > 35 kg/m2, the correlation decreased and became insignificant (p = 0.08). No significant correlation was found between the expression of BAT genes and blood lipid profiles (p > 0.05). Serum FGF21 was positively and significantly correlated to the expression of UCP1 (r = 0.56, p = 0.02) and TBX1 (r = 0.62, p = 0.01), however, this correlation was missing in patients with severe obesity.ConclusionsOur data suggested that brown and beige genes expression in abdominal subcutaneous tissues is dysregulated in patients with obesity. Further studies are needed to investigate the role of browning of subcutaneous tissues in regulating body weight and metabolism in human.Copyright: © 2018 Termedia & Banach.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…