-
- Sergios Gatidis, Markus Scharpf, Petros Martirosian, Ilja Bezrukov, Thomas Küstner, Jörg Hennenlotter, Stephan Kruck, Sascha Kaufmann, Christina Schraml, Christian la Fougère, Nina F Schwenzer, and Holger Schmidt.
- Department of Radiology, Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Germany.
- NMR Biomed. 2015 Jul 1; 28 (7): 914-22.
AbstractMultiparametric medical imaging data can be large and are often complex. Machine learning algorithms can assist in image interpretation when reliable training data exist. In most cases, however, knowledge about ground truth (e.g. histology) and thus training data is limited, which makes application of machine learning algorithms difficult. The purpose of this study was to design and implement a learning algorithm for classification of multidimensional medical imaging data that is robust and accurate even with limited prior knowledge and that allows for generalization and application to unseen data. Local prostate cancer was chosen as a model for application and validation. 16 patients underwent combined simultaneous [(11) C]-choline positron emission tomography (PET)/MRI. The following imaging parameters were acquired: T2 signal intensities, apparent diffusion coefficients, parameters Ktrans and Kep from dynamic contrast-enhanced MRI, and PET standardized uptake values (SUVs). A spatially constrained fuzzy c-means algorithm (sFCM) was applied to the single datasets and the resulting labeled data were used for training of a support vector machine (SVM) classifier. Accuracy and false positive and false negative rates of the proposed algorithm were determined in comparison with manual tumor delineation. For five of the 16 patients rates were also determined in comparison with the histopathological standard of reference. The combined sFCM/SVM algorithm proposed in this study revealed reliable classification results consistent with the histopathological reference standard and comparable to those of manual tumor delineation. sFCM/SVM generally performed better than unsupervised sFCM alone. We observed an improvement in accuracy with increasing number of imaging parameters used for clustering and SVM training. In particular, including PET SUVs as an additional parameter markedly improved classification results. A variety of applications are conceivable, especially for imaging of tissues without easily available histopathological correlation.Copyright © 2015 John Wiley & Sons, Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.