NMR in biomedicine
-
γ-Aminobutyric acid (GABA) has been implicated in several pain conditions, yet no study has systematically evaluated GABA levels in migraine using (1) H-MRS. The accurate detection, separation and quantification of GABA in individuals with migraine could elucidate the role of this neurotransmitter in migraine pathophysiology. Such information may eventually be useful in the diagnosis and development of more effective treatments for migraine. ⋯ These results add to the scarce evidence on the putative role of GABA in migraine and provide a basis to further explore the causal relationship between GABA+ and the pathophysiology of migraine. This study also demonstrates that GABA+ concentration has good diagnostic accuracy for migraine. These findings offer new research and practice directions for migraine diagnosis.
-
Multiparametric medical imaging data can be large and are often complex. Machine learning algorithms can assist in image interpretation when reliable training data exist. In most cases, however, knowledge about ground truth (e.g. histology) and thus training data is limited, which makes application of machine learning algorithms difficult. ⋯ We observed an improvement in accuracy with increasing number of imaging parameters used for clustering and SVM training. In particular, including PET SUVs as an additional parameter markedly improved classification results. A variety of applications are conceivable, especially for imaging of tissues without easily available histopathological correlation.
-
Conventional MRI for brain tumor diagnosis employs T2 -weighted and contrast-enhanced T1 -weighted sequences. Non-enhanced T1 -weighted images provide improved anatomical details for precise tumor location, but reduced tumor-to-background contrast as elevated T1 and proton density (PD) values in tumor tissue affect the signal inversely. Radiofrequency (RF) coil inhomogeneities may further mask tumor and edema outlines. ⋯ Pure T1 weighting yielded lower SNR, but high CNR, because of increased optical contrasts. In patients with brain tumors, synthetic anatomies with pure T1 weighting yielded significant increases in optical contrast and improved visibility of tumor and edema in comparison with anatomies reflecting conventional T1 contrasts. In summary, the optimized purely T1 -weighted synthetic anatomy with an isotropic resolution of 1 mm, as proposed in this work, considerably enhances optical contrast and visibility of brain tumors and edema.