• Comput Methods Programs Biomed · Aug 2020

    The effect of cardiac output on the pharmacokinetics and pharmacodynamics of propofol during closed-loop induction of anesthesia.

    • A Savoca, K van Heusden, D Manca, J M Ansermino, and G A Dumont.
    • PSE-Lab, Process Systems Engineering Laboratory, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
    • Comput Methods Programs Biomed. 2020 Aug 1; 192: 105406.

    Background And ObjectiveIntraoperative hemodynamic stability is essential to safety and post-operative well-being of patients and should be optimized in closed-loop control of anesthesia. Cardiovascular changes inducing variations in pharmacokinetics may require dose modification. Rigorous investigational tools can strengthen current knowledge of the anesthesiologists and support clinical practice. We quantify the cardiovascular response of high-risk patients to closed-loop anesthesia and propose a new application of physiologically-based pharmacokinetic-pharmacodynamic (PBPK-PD) simulations to examine the effect of hemodynamic changes on the depth of hypnosis (DoH).MethodsWe evaluate clinical hemodynamic changes in response to anesthesia induction in high-risk patients from a study on closed-loop anesthesia. We develop and validate a PBPK-PD model to simulate the effect of changes in cardiac output (CO) on plasma levels and DoH. The wavelet-based anesthetic value for central nervous system monitoring index (WAVCNS) is used as clinical end-point of propofol hypnotic effect.ResultsThe median (interquartile range, IQR) changes in CO and arterial pressure (AP), 3 min after induction of anesthesia, are 22.43 (14.82-36.0) % and 26.60 (22.39-35.33) % respectively. The decrease in heart rate (HR) is less marked, i.e. 8.82 (4.94-12.68) %. The cardiovascular response is comparable or less enhanced than in manual propofol induction studies. PBPK simulations show that the marked decrease in CO coincides with high predicted plasma levels and deep levels of hypnosis, i.e. WAVCNS < 40. PD model identification is improved using the PBPK model rather than a standard three-compartment PK model. PD simulations reveal that a 30% drop in CO can cause a 30% change in WAVCNS.ConclusionsSignificant CO drops produce increased predicted plasma concentrations corresponding to deeper anesthesia, which is potentially dangerous for elderly patients. PBPK-PD model simulations allow studying and quantifying these effects to improve clinical practice.Copyright © 2020. Published by Elsevier B.V.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…