• NeuroImage · Jun 2018

    Targeting alpha-band oscillations in a cortical model with amplitude-modulated high-frequency transcranial electric stimulation.

    • Ehsan Negahbani, Florian H Kasten, Christoph S Herrmann, and Flavio Fröhlich.
    • Dept. of Psychiatry, Univ. of North Carolina, Chapel Hill, NC 27514-5307, United States.
    • Neuroimage. 2018 Jun 1; 173: 3-12.

    AbstractNon-invasive brain stimulation to target specific network activity patterns, e.g. transcranial alternating current stimulation (tACS), has become an essential tool to understand the causal role of neuronal oscillations in cognition and behavior. However, conventional sinusoidal tACS limits the ability to record neuronal activity during stimulation and lacks spatial focality. One particularly promising new tACS stimulation paradigm uses amplitude-modulated (AM) high-frequency waveforms (AM-tACS) with a slow signal envelope that may overcome the limitations. Moreover. AM-tACS using high-frequency carrier signals is more tolerable than conventional tACS, e.g. in terms of skin irritation and occurrence of phosphenes, when applied at the same current intensities (e.g. 1-2 mA). Yet, the fundamental mechanism of neuronal target-engagement by AM-tACS waveforms has remained unknown. We used a computational model of cortex to investigate how AM-tACS modulates endogenous oscillations and compared the target engagement mechanism to the case of conventional (unmodulated) low-frequency tACS. Analysis of stimulation amplitude and frequency indicated that cortical oscillations were phase-locked to the envelope of the AM stimulation signal, which thus exhibits the same target engagement mechanism as conventional (unmodulated) low frequency tACS. However, in the computational model substantially higher current intensities were needed for AM-tACS than for low-frequency (unmodulated) tACS waveforms to achieve pronounced phase synchronization. Our analysis of the carrier frequency suggests that there might be a trade-off between the use of high-frequency carriers and the stimulation amplitude required for successful entrainment. Together, our computational simulations support the use of slow-envelope high frequency carrier AM waveforms as a tool for noninvasive modulation of brain oscillations. More empirical data will be needed to identify the optimal stimulation parameters and to evaluate tolerability and safety of both, AM- and conventional tACS.Copyright © 2018 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.