NeuroImage
-
Non-invasive brain stimulation to target specific network activity patterns, e.g. transcranial alternating current stimulation (tACS), has become an essential tool to understand the causal role of neuronal oscillations in cognition and behavior. However, conventional sinusoidal tACS limits the ability to record neuronal activity during stimulation and lacks spatial focality. One particularly promising new tACS stimulation paradigm uses amplitude-modulated (AM) high-frequency waveforms (AM-tACS) with a slow signal envelope that may overcome the limitations. ⋯ Our analysis of the carrier frequency suggests that there might be a trade-off between the use of high-frequency carriers and the stimulation amplitude required for successful entrainment. Together, our computational simulations support the use of slow-envelope high frequency carrier AM waveforms as a tool for noninvasive modulation of brain oscillations. More empirical data will be needed to identify the optimal stimulation parameters and to evaluate tolerability and safety of both, AM- and conventional tACS.