• NeuroImage · Oct 2014

    Simultaneous recording of MEG, EEG and intracerebral EEG during visual stimulation: from feasibility to single-trial analysis.

    • Anne-Sophie Dubarry, Jean-Michel Badier, Agnès Trébuchon-Da Fonseca, Martine Gavaret, Romain Carron, Fabrice Bartolomei, Catherine Liégeois-Chauvel, Jean Régis, Patrick Chauvel, F-Xavier Alario, and Christian-G Bénar.
    • Aix-Marseille Université, Faculté de Médecine La Timone, 13005 Marseille, France; Aix-Marseille Université, CNRS, LPC UMR 7290, 13331 Marseille, France; INSERM, UMR 1106, Institut de Neurosciences des Systèmes, 13005 Marseille, France.
    • Neuroimage. 2014 Oct 1; 99: 548-58.

    AbstractElectroencephalography (EEG), magnetoencephalography (MEG), and intracerebral stereotaxic EEG (SEEG) are the three neurophysiological recording techniques, which are thought to capture the same type of brain activity. Still, the relationships between non-invasive (EEG, MEG) and invasive (SEEG) signals remain to be further investigated. In early attempts at comparing SEEG with either EEG or MEG, the recordings were performed separately for each modality. However such an approach presents substantial limitations in terms of signal analysis. The goal of this technical note is to investigate the feasibility of simultaneously recording these three signal modalities (EEG, MEG and SEEG), and to provide strategies for analyzing this new kind of data. Intracerebral electrodes were implanted in a patient with intractable epilepsy for presurgical evaluation purposes. This patient was presented with a visual stimulation paradigm while the three types of signals were simultaneously recorded. The analysis started with a characterization of the MEG artifact caused by the SEEG equipment. Next, the average evoked activities were computed at the sensor level, and cortical source activations were estimated for both the EEG and MEG recordings; these were shown to be compatible with the spatiotemporal dynamics of the SEEG signals. In the average time-frequency domain, concordant patterns between the MEG/EEG and SEEG recordings were found below the 40 Hz level. Finally, a fine-grained coupling between the amplitudes of the three recording modalities was detected in the time domain, at the level of single evoked responses. Importantly, these correlations have shown a high level of spatial and temporal specificity. These findings provide a case for the ability of trimodal recordings (EEG, MEG, and SEEG) to reach a greater level of specificity in the investigation of brain signals and functions.Copyright © 2014 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…