-
Comparative Study
Prenatal Alcohol Exposure and Prenatal Stress Differentially alter Glucocorticoid Signaling in the Placenta and Fetal Brain.
- N Lan, M P Y Chiu, L Ellis, and J Weinberg.
- Department of Cellular and Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, PR China. Electronic address: lanni.lan@gmail.com.
- Neuroscience. 2017 Feb 7; 342: 167-179.
AbstractAdverse intrauterine environments increase vulnerability to chronic diseases across the lifespan. The hypothalamic-pituitary-adrenal (HPA) axis, which integrates multiple neuronal signals and ultimately controls the response to stressors, may provide a final common pathway linking early adversity and adult diseases. Both prenatal alcohol exposure (PAE) and prenatal stress (PS) induce a hyperresponsive HPA phenotype in adulthood. As glucocorticoids are pivotal for the normal development of many fetal tissues including the brain, we used animal models of PAE and PS to investigate possible mechanisms underlying fetal programing of glucocorticoid signaling in the placenta and fetal brain at gestation day (GD) 21. We found that both PAE and PS dams had higher corticosterone (CORT) levels than control dams. However, 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) enzyme levels were increased in PAE and unchanged in PS placentae, although there were no differences in 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. Moreover, only PAE fetuses showed decreased body weight and increased placental weight, and hence a lower fetal/placental weight ratio, a marker of placenta efficiency, compared to all other prenatal groups. Importantly, PAE and PS differentially altered corticosteroid receptor levels in placentae and brains. In the PS condition, maternal CORT was negatively correlated with both 11β-HSD1 and mineralocorticoid receptor (MR) protein levels in male and female placentae, whereas in the PAE condition, there were trends for a positive correlation between maternal CORT and 11β-HSD1, regardless of sex, and a negative correlation between maternal alcohol intake and MR in male placentae. In fetal brains, sexually dimorphic changes in MR and glucocorticoid receptor (GR) levels, and the MR/GR ratio seen in C fetuses were absent in PAE and PS fetuses. In addition, PS but not PAE female fetuses had higher MR and lower GR expression levels in certain limbic areas compared to C female fetuses. Thus the similar adult HPA hyperresponsive phenotype in PAE and PS animals likely occurs through differential effects on glucocorticoid signaling in the placenta and fetal brain.Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.